IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v221y2019icp348-361.html
   My bibliography  Save this article

An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing

Author

Listed:
  • Hassani, Yousef
  • Hashemy Shahdany, Seied Mehdy
  • Maestre, J.M.
  • Zahraie, Banafsheh
  • Ghorbani, Mohammad
  • Henneberry, Shida Rastegari
  • Kulshreshtha, Suren N.

Abstract

Water markets in developing countries are difficult to implement due to social, environmental, and technical restrictions. However, the primary concern in irrigation districts with a lack of a functioning market mechanism is the economically efficient allocation of water. In this light, the objective of this study is the development of an Economic-Operational framework that could be used for the most economically efficient allocation of water. This framework is expected to provide an infrastructure for delivering volumetric mutually-related main economic components: Positive Mathematical Programing (PMP) and the Model Predictive Control (MPC) which is added as an operational model component. The economic model (PMP) simulates the existing conditions surrounding the agricultural activities and calculates the agricultural sector’s income, as well as the economic value of water, considering current cropping patterns and the economic value of water. Consequently, the operational model (MPC) distributes and delivers water to the agricultural units based on the weighted average of water’s economic value. Operational performance of the entire canal system is then assessed based on the customized operational assessment indicators for developing the framework. Finally, the last part of the framework includes performance evaluation of the approach introduced in the present study with respect to sustainable development goals, using the multi-criteria decision-making (MCDM) method. For this purpose, the effect of any changes in the calculated volume of water, through employing the framework, on the economic, social, and environmental indicators can be observed.

Suggested Citation

  • Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
  • Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:348-361
    DOI: 10.1016/j.agwat.2019.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418314835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    2. Abdullaev, Iskandar & Kazbekov, Jusipbek & Manthritilake, Hearth & Jumaboev, Kahramon, 2009. "Participatory water management at the main canal: A case from South Ferghana canal in Uzbekistan," Agricultural Water Management, Elsevier, vol. 96(2), pages 317-329, February.
    3. S. Hashemy Shahdany & J. Maestre & P. van Overloop, 2015. "Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3315-3328, July.
    4. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    5. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    6. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    7. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    8. Richard E. Howitt, 1995. "A Calibration Method For Agricultural Economic Production Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(2), pages 147-159, May.
    9. S. M. Hashemy Shahdany & A. R. Firoozfar, 2017. "Providing a Reliable Water Level Control in Main Canals under Significant Inflow Fluctuations at Drought Periods within Canal Automation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3343-3354, September.
    10. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    11. Raffaele Cortignani & Simone Severini, 2012. "A constrained optimization model based on generalized maximum entropy to assess the impact of reforming agricultural policy on the sustainability of irrigated areas," Agricultural Economics, International Association of Agricultural Economists, vol. 43(6), pages 621-633, November.
    12. Dai, Xiaoping & Han, Yuping & Zhang, Xiaohong & Chen, Jing & Li, Daoxi, 2017. "Development of a water transfer compensation classification: A case study between China, Japan, America and Australia," Agricultural Water Management, Elsevier, vol. 182(C), pages 151-157.
    13. Kinzli, Kristoph-Dietrich & Martinez, Matthew & Oad, Ramchand & Prior, Adam & Gensler, David, 2010. "Using an ADCP to determine canal seepage loss in an irrigation district," Agricultural Water Management, Elsevier, vol. 97(6), pages 801-810, June.
    14. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    15. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    16. Lozano, D. & Arranja, C. & Rijo, M. & Mateos, L., 2010. "Simulation of automatic control of an irrigation canal," Agricultural Water Management, Elsevier, vol. 97(1), pages 91-100, January.
    17. Subedi, Abhinaya & Chávez, José L. & Andales, Allan A., 2017. "ASCE-EWRI standardized Penman-Monteith evapotranspiration (ET) equation performance in southeastern Colorado," Agricultural Water Management, Elsevier, vol. 179(C), pages 74-80.
    18. Lopez-Gunn, E. & Zorrilla, P. & Prieto, F. & Llamas, M.R., 2012. "Lost in translation? Water efficiency in Spanish agriculture," Agricultural Water Management, Elsevier, vol. 108(C), pages 83-95.
    19. Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
    20. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    21. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    3. Aydin, Boran Ekin & Oude Essink, Gualbert H.P. & Delsman, Joost R. & van de Giesen, Nick & Abraham, Edo, 2022. "Nonlinear model predictive control of salinity and water level in polder networks: Case study of Lissertocht catchment," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    5. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Yao, Liming & Li, Yalan & Chen, Xudong, 2021. "A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin," Agricultural Water Management, Elsevier, vol. 256(C).
    7. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Karimi Avargani, Habib & Hashemy Shahdany, S. Mehdy & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid & Guan, Guanghua & Behzadi, Farhad & Milan, Sami Ghordoyee & Berndtsson, Ronny, 2023. "Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    11. Nathan Felipe da Silva Caldana & Pablo Ricardo Nitsche & Alan Carlos Martelócio & Anderson Paulo Rudke & Geovanna Cristina Zaro & Luiz Gustavo Batista Ferreira & Paulo Vicente Contador Zaccheo & Sergi, 2019. "Agroclimatic Risk Zoning of Avocado ( Persea americana ) in the Hydrographic Basin of Paraná River III, Brazil," Agriculture, MDPI, vol. 9(12), pages 1-11, December.
    12. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    5. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.
    6. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    7. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    8. Ali, Md Kamar & Klein, K.K., 2014. "Implications of current and alternative water allocation policies in the Bow River Sub Basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 133(C), pages 1-11.
    9. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    10. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Aldaya, Maite M. & Gutiérrez-Martín, Carlos & Espinosa-Tasón, Jaime & Ederra, Idoia & Sánchez, Mercedes, 2023. "The impact of the territorial gradient and the irrigation water price on agricultural production along the first phase of the Navarra Canal in Spain," Agricultural Water Management, Elsevier, vol. 281(C).
    12. Umed Temurshoev & Marian Mraz & Luis Delgado Sancho & Peter Eder, 2015. "EU Petroleum Refining Fitness Check: OURSE Modelling and Results," JRC Research Reports JRC96207, Joint Research Centre.
    13. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    14. Julio Berbel & Alfonso Expósito & Carlos Gutiérrez-Martín & Luciano Mateos, 2019. "Effects of the Irrigation Modernization in Spain 2002–2015," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1835-1849, March.
    15. Umed Temurshoev & Fréderic Lantz, 2016. "Long-term petroleum product supply analysis through a robust modelling approach," Working Papers 2016-003, Universidad Loyola Andalucía, Department of Economics.
    16. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    17. Paris, Quirino, 2017. "Cost function and positive mathematical programming," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(1), May.
    18. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    19. Cortignani, Raffaele & Severini, Simone, 2010. "The impact of reforming the Common Agricultural Policy on the sustainability of the irrigated area of Central Italy. An empirical assessment by means of a Positive Mathematical Programming model," 120th Seminar, September 2-4, 2010, Chania, Crete 109318, European Association of Agricultural Economists.
    20. Christina Moulogianni & Thomas Bournaris, 2021. "Assessing the Impacts of Rural Development Plan Measures on the Sustainability of Agricultural Holdings Using a PMP Model," Land, MDPI, vol. 10(5), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:348-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.