IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i6p801-810.html
   My bibliography  Save this article

Using an ADCP to determine canal seepage loss in an irrigation district

Author

Listed:
  • Kinzli, Kristoph-Dietrich
  • Martinez, Matthew
  • Oad, Ramchand
  • Prior, Adam
  • Gensler, David

Abstract

Seepage from earthen irrigation canals represents substantial water loss in irrigation districts. Historically, the determination of canal seepage was accomplished using the inflow-outflow method with propeller and electromagnetic type flow meters. This method was difficult, time consuming, and limited by measurement device accuracy. In recent years, advances in technology have lead to the widespread use of Acoustic Doppler Current Profilers (ADCP) for discharge measurements in streams and rivers. Even though ADCP use has become widespread for stream discharges, studies to determine canal seepage using this new technology are limited. Using an ADCP, extensive field measurements were conducted in the Middle Rio Grande Conservancy District. This paper describes the ADCP measurement protocol used to measure irrigation canal seepage and presents predictive equations for determining canal seepage based on flow rate and canal geometry.

Suggested Citation

  • Kinzli, Kristoph-Dietrich & Martinez, Matthew & Oad, Ramchand & Prior, Adam & Gensler, David, 2010. "Using an ADCP to determine canal seepage loss in an irrigation district," Agricultural Water Management, Elsevier, vol. 97(6), pages 801-810, June.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:6:p:801-810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00016-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Bakry & Ahmed Awad, 1997. "Practical Estimation of Seepage Losses Along Earthen Canals in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 197-206, June.
    2. Alam, M. M. & Bhutta, M. N., 2004. "Comparative evaluation of canal seepage investigation techniques," Agricultural Water Management, Elsevier, vol. 66(1), pages 65-76, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Mohammad Rezapour Tabari & Mohsen Mazak Mari, 2016. "The Integrated Approach of Simulation and Optimization in Determining the Optimum Dimensions of Canal for Seepage Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1271-1292, February.
    2. Najihah Dor & Syafalni Syafalni & Ismail Abustan & Mohd Rahman & Mohd Nazri & Roslanzairi Mostafa & Lakam Mejus, 2011. "Verification of Surface-Groundwater Connectivity in an Irrigation Canal Using Geophysical, Water Balance and Stable Isotope Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2837-2853, September.
    3. Xu, Xu & Jiang, Yao & Liu, Minghuan & Huang, Quanzhong & Huang, Guanhua, 2019. "Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin," Agricultural Water Management, Elsevier, vol. 211(C), pages 152-164.
    4. Liao, Xiangcheng & Mahmoud, Ali & Hu, Tiesong & Wang, Jinglin, 2022. "A novel irrigation canal scheduling model adaptable to the spatial-temporal variability of water conveyance loss," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    6. Salmasi, Farzin & Abraham, John, 2020. "Predicting seepage from unlined earthen channels using the finite element method and multi variable nonlinear regression," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.
    8. Lund, A.A. Rehman & Martin, Chad A. & Gates, Timothy K. & Scalia, Joseph & Babar, M. Munir, 2021. "Field evaluation of a polymer sealant for canal seepage reduction," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Sharma, Anurag & Mihailović, Dragutin T. & Kumar, Bimlesh, 2018. "Randomness representation of Turbulence in an alluvial channel affected by downward seepage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 74-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Xiangcheng & Mahmoud, Ali & Hu, Tiesong & Wang, Jinglin, 2022. "A novel irrigation canal scheduling model adaptable to the spatial-temporal variability of water conveyance loss," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Meredith, Elizabeth & Blais, Nicole, 2019. "Quantifying irrigation recharge sources using groundwater modeling," Agricultural Water Management, Elsevier, vol. 214(C), pages 9-16.
    3. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    4. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Alexander Fernald & Vincent Tidwell & José Rivera & Sylvia Rodríguez & Steven Guldan & Caitriana Steele & Carlos Ochoa & Brian Hurd & Marquita Ortiz & Kenneth Boykin & Andres Cibils, 2012. "Modeling Sustainability of Water, Environment, Livelihood, and Culture in Traditional Irrigation Communities and Their Linked Watersheds," Sustainability, MDPI, vol. 4(11), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:6:p:801-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.