IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp161-171.html
   My bibliography  Save this article

A methodology for redesigning agroecological radical production systems at the farm level

Author

Listed:
  • Pissonnier, Solène
  • Dufils, Arnaud
  • Le Gal, Pierre-Yves

Abstract

A redesign process at the farm level may be required for agricultural production systems to evolve in a manner that reduces their environmental and health impacts. This process leads to imagining configurations described as “radical” because they reach beyond the limits posed by the substitution of synthetic inputs by natural ones. An assessment of the possible effects of these configurations on farm functioning and performance is required to inform stakeholders about the advantages of testing and implementing them. This study describes an approach for designing and assessing such configurations that involves researchers, technicians and farmers. Some of these stakeholders can play the role of designers, who lead the redesign process, and/or experts, who provide references and knowledge throughout the exercise. The approach is based on six principles (evaluation, plausibility, precision, flexibility, diversity, iteration) and includes eight steps. Based on a diagnosis of the production context (step 1), some ideas of radical production system are imagined (step 2), which define the kind of experts to be involved (step 3). A farm, virtual or real, then is selected and characterized as a case study (step 4), and the specific objectives driving the farm's redesign process are described (step 5). Scenarios are then designed and characterized (step 6), quantitatively assessed using a simulation tool dedicated to the kind of production system studied (step 7), and compared in order to feed debates between designers and experts on the merits and limits of the various options designed (step 8). Steps 6 through 8 may be repeated as new ideas emerge. This methodology is illustrated with the case of a farm specialized in apple production on which a sheep unit is introduced to reduce pesticide use by ensuring grass management and reducing pest pressure. Two scenarios are designed according to the kind of sheep management. CoHort software was used to assess the two scenarios in terms of economic performance, frequency of pesticide use, and farm work organization. The limits and values of this redesign process are discussed regarding the hypothesis that must be made to characterize virtual biodiversity-based systems, the kind of involvement expected from farmers, and the opportunities provided by moving from the farm to territory scale in the case of crop-livestock systems. This redesign approach can potentially be applied to many topics, ranging from the consistent combination of agroecological practices to futuristic scenarios involving robots.

Suggested Citation

  • Pissonnier, Solène & Dufils, Arnaud & Le Gal, Pierre-Yves, 2019. "A methodology for redesigning agroecological radical production systems at the farm level," Agricultural Systems, Elsevier, vol. 173(C), pages 161-171.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:161-171
    DOI: 10.1016/j.agsy.2019.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18307078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dogliotti, S. & García, M.C. & Peluffo, S. & Dieste, J.P. & Pedemonte, A.J. & Bacigalupe, G.F. & Scarlato, M. & Alliaume, F. & Alvarez, J. & Chiappe, M. & Rossing, W.A.H., 2014. "Co-innovation of family farm systems: A systems approach to sustainable agriculture," Agricultural Systems, Elsevier, vol. 126(C), pages 76-86.
    2. Drogué, Sophie & DeMaria, Federica, 2012. "Pesticide residues and trade, the apple of discord?," Food Policy, Elsevier, vol. 37(6), pages 641-649.
    3. Moraine, Marc & Grimaldi, Juliette & Murgue, Clément & Duru, Michel & Therond, Olivier, 2016. "Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level," Agricultural Systems, Elsevier, vol. 147(C), pages 87-97.
    4. Cécile Barnaud & Annemarie van Paassen, 2013. "Equity, power games, and legitimacy: dilemmas of participatory natural resource management," Post-Print hal-01386409, HAL.
    5. Bood, Robert & Postma, Theo, 1997. "Strategic learning with scenarios," European Management Journal, Elsevier, vol. 15(6), pages 633-647, December.
    6. Cowan, Robin & Gunby, Philip, 1996. "Sprayed to Death: Path Dependence, Lock-In and Pest Control Strategies," Economic Journal, Royal Economic Society, vol. 106(436), pages 521-542, May.
    7. Carberry, P. S. & Hochman, Z. & McCown, R. L. & Dalgliesh, N. P. & Foale, M. A. & Poulton, P. L. & Hargreaves, J. N. G. & Hargreaves, D. M. G. & Cawthray, S. & Hillcoat, N. & Robertson, M. J., 2002. "The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation," Agricultural Systems, Elsevier, vol. 74(1), pages 141-177, October.
    8. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    9. Klerkx, Laurens & van Bommel, Severine & Bos, Bram & Holster, Henri & Zwartkruis, Joyce V. & Aarts, Noelle, 2012. "Design process outputs as boundary objects in agricultural innovation projects: Functions and limitations," Agricultural Systems, Elsevier, vol. 113(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jie & Zhong, Hua & Hu, Wuyang & Qiao, Guanghua, 2022. "Substitution versus wealth: Dual effects of non-pastoral income on livestock herd size," World Development, Elsevier, vol. 151(C).
    2. Selbonne, S. & Guindé, L. & Belmadani, A. & Bonine, C. & L. Causeret, F. & Duval, M. & Sierra, J. & Blazy, J.M., 2022. "Designing scenarios for upscaling climate-smart agriculture on a small tropical island," Agricultural Systems, Elsevier, vol. 199(C).
    3. De Lapparent, Alice & Sabatier, Rodolphe & Paut, Raphaël & Martin, Sophie, 2023. "Perennial transitions from market gardening towards mixed fruit tree - vegetable systems," Agricultural Systems, Elsevier, vol. 207(C).
    4. Bassma Azzamouri & Vincent Hovelaque, 2024. "An integrated steering approach to improve a phosphate supply chain efficiency," Post-Print hal-04418207, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenny, Ursula & Regan, Áine & Hearne, Dave & O'Meara, Christine, 2021. "Empathising, defining and ideating with the farming community to develop a geotagged photo app for smart devices: A design thinking approach," Agricultural Systems, Elsevier, vol. 194(C).
    2. Puech, Camille & Brulaire, Arnaud & Paraiso, Jérôme & Faloya, Vincent, 2021. "Collective design of innovative agroecological cropping systems for the industrial vegetable sector," Agricultural Systems, Elsevier, vol. 191(C).
    3. Dolinska, Aleksandra, 2017. "Bringing farmers into the game. Strengthening farmers' role in the innovation process through a simulation game, a case from Tunisia," Agricultural Systems, Elsevier, vol. 157(C), pages 129-139.
    4. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    5. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    6. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    7. Rossing, Walter A.H. & Albicette, Maria Marta & Aguerre, Veronica & Leoni, Carolina & Ruggia, Andrea & Dogliotti, Santiago, 2021. "Crafting actionable knowledge on ecological intensification: Lessons from co-innovation approaches in Uruguay and Europe," Agricultural Systems, Elsevier, vol. 190(C).
    8. Maria MORTAN & Vincenţiu VEREŞ & Leonina BACIU & Patricia RAŢIU, 2018. "Family farms from Romania Nord Vest Region in the context of the rural sustainable development," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 10(1), pages 111-128, April.
    9. Aare, Ane Kirstine & Lund, Søren & Hauggaard-Nielsen, Henrik, 2021. "Exploring transitions towards sustainable farming practices through participatory research – The case of Danish farmers' use of species mixtures," Agricultural Systems, Elsevier, vol. 189(C).
    10. Bakker, Teatske & Dugué, Patrick & de Tourdonnet, Stéphane, 2022. "How do farmers change their practices at the farm level after co-design processes in Farmer Field Schools?," Agricultural Systems, Elsevier, vol. 201(C).
    11. Toffolini, Quentin & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Borg, Julie & Enjalbert, Jérôme & Gauffreteau, Arnaud & Goldringer, Isabelle & Lefèvre, Amélie & Loyce, Chantal & Martin, Philippe & , 2020. "Design as a source of renewal in the production of scientific knowledge in crop science," Agricultural Systems, Elsevier, vol. 185(C).
    12. Vänninen, Irene & Pereira-Querol, Marco & Engeström, Yrjö, 2015. "Generating transformative agency among horticultural producers: An activity-theoretical approach to transforming Integrated Pest Management," Agricultural Systems, Elsevier, vol. 139(C), pages 38-49.
    13. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    14. Ryschawy, Julie & Grillot, Myriam & Charmeau, Anaïs & Pelletier, Aude & Moraine, Marc & Martin, Guillaume, 2022. "A participatory approach based on the serious game Dynamix to co-design scenarios of crop-livestock integration among farms," Agricultural Systems, Elsevier, vol. 201(C).
    15. Annemarie Groot-Kormelinck & Jos Bijman & Jacques Trienekens & Laurens Klerkx, 2022. "Producer organizations as transition intermediaries? Insights from organic and conventional vegetable systems in Uruguay," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1277-1300, December.
    16. Peltonen-Sainio, Pirjo & Jauhiainen, Lauri & Laurila, Heikki & Sorvali, Jaana & Honkavaara, Eija & Wittke, Samantha & Karjalainen, Mika & Puttonen, Eetu, 2019. "Land use optimization tool for sustainable intensification of high-latitude agricultural systems," Land Use Policy, Elsevier, vol. 88(C).
    17. Colnago, P. & Rossing, W.A.H. & Dogliotti, S., 2021. "Closing sustainability gaps on family farms: Combining on-farm co-innovation and model-based explorations," Agricultural Systems, Elsevier, vol. 188(C).
    18. Martin, G., 2015. "A conceptual framework to support adaptation of farming systems – Development and application with Forage Rummy," Agricultural Systems, Elsevier, vol. 132(C), pages 52-61.
    19. Marinus, Wytze & Descheemaeker, Katrien K.E. & van de Ven, Gerrie W.J. & Waswa, Wycliffe & Mukalama, John & Vanlauwe, Bernard & Giller, Ken E., 2021. "“That is my farm” – An integrated co-learning approach for whole-farm sustainable intensification in smallholder farming," Agricultural Systems, Elsevier, vol. 188(C).
    20. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:161-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.