IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v201y2022ics0308521x22000932.html
   My bibliography  Save this article

How do farmers change their practices at the farm level after co-design processes in Farmer Field Schools?

Author

Listed:
  • Bakker, Teatske
  • Dugué, Patrick
  • de Tourdonnet, Stéphane

Abstract

Farmers are increasingly recognized as the designers of their own production systems, and face challenges that call for context-specific innovations. Co-designing innovations with farmers is one way to tailor options to local constraints and resources. However, studies on how farmers implement agroecological practices after a co-design process are rare, especially at the farm level.

Suggested Citation

  • Bakker, Teatske & Dugué, Patrick & de Tourdonnet, Stéphane, 2022. "How do farmers change their practices at the farm level after co-design processes in Farmer Field Schools?," Agricultural Systems, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:agisys:v:201:y:2022:i:c:s0308521x22000932
    DOI: 10.1016/j.agsy.2022.103457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22000932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chloé Salembier & Blanche Segrestin & Elsa Berthet & Benoit Weil & Jean-Marc Meynard, 2018. "Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems," Post-Print hal-01810426, HAL.
    2. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    3. Dogliotti, S. & García, M.C. & Peluffo, S. & Dieste, J.P. & Pedemonte, A.J. & Bacigalupe, G.F. & Scarlato, M. & Alliaume, F. & Alvarez, J. & Chiappe, M. & Rossing, W.A.H., 2014. "Co-innovation of family farm systems: A systems approach to sustainable agriculture," Agricultural Systems, Elsevier, vol. 126(C), pages 76-86.
    4. Salembier, Chloé & Segrestin, Blanche & Berthet, Elsa & Weil, Benoît & Meynard, Jean-Marc, 2018. "Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems," Agricultural Systems, Elsevier, vol. 164(C), pages 277-290.
    5. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    6. Prost, Lorène & Reau, Raymond & Paravano, Laurette & Cerf, Marianne & Jeuffroy, Marie-Hélène, 2018. "Designing agricultural systems from invention to implementation: the contribution of agronomy. Lessons from a case study," Agricultural Systems, Elsevier, vol. 164(C), pages 122-132.
    7. Van den Berg, Henk & Jiggins, Janice, 2007. "Investing in Farmers--The Impacts of Farmer Field Schools in Relation to Integrated Pest Management," World Development, Elsevier, vol. 35(4), pages 663-686, April.
    8. Sumberg, James & Okali, Christine & Reece, David, 2003. "Agricultural research in the face of diversity, local knowledge and the participation imperative: theoretical considerations," Agricultural Systems, Elsevier, vol. 76(2), pages 739-753, May.
    9. Périnelle, Anne & Meynard, Jean-Marc & Scopel, Eric, 2021. "Combining on-farm innovation tracking and participatory prototyping trials to develop legume-based cropping systems in West Africa," Agricultural Systems, Elsevier, vol. 187(C).
    10. Johnson, Nancy L. & Kovarik, Chiara & Meinzen-Dick, Ruth & Njuki, Jemimah & Quisumbing, Agnes, 2016. "Gender, Assets, and Agricultural Development: Lessons from Eight Projects," World Development, Elsevier, vol. 83(C), pages 295-311.
    11. Hugh Waddington & Birte Snilstveit & Jorge Hombrados & Martina Vojtkova & Daniel Phillips & Philip Davies & Howard White, 2014. "Farmer Field Schools for Improving Farming Practices and Farmer Outcomes: A Systematic Review," Campbell Systematic Reviews, John Wiley & Sons, vol. 10(1), pages -335.
    12. Friis-Hansen, Esbern & Duveskog, Deborah, 2012. "The Empowerment Route to Well-being: An Analysis of Farmer Field Schools in East Africa," World Development, Elsevier, vol. 40(2), pages 414-427.
    13. Andrieu, Nadine & Descheemaeker, Katrien & Sanou, Thierry & Chia, Eduardo, 2015. "Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa," Agricultural Systems, Elsevier, vol. 136(C), pages 125-137.
    14. Chloé Salembier & Blanche Segrestin & Elsa Berthet & Benoit Weil & Jean-Marc Meynard, 2018. "Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems," Post-Print hal-01823313, HAL.
    15. Henk Berg & Suzanne Phillips & Marcel Dicke & Marjon Fredrix, 2020. "Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1443-1459, December.
    16. Chrysanthi Charatsari & Evagelos D. Lioutas & Alex Koutsouris, 2020. "Farmer field schools and the co-creation of knowledge and innovation: the mediating role of social capital," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1139-1154, December.
    17. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    18. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    19. Deffontaines, Landry & Mottes, Charles & Della Rossa, Pauline & Lesueur-Jannoyer, Magalie & Cattan, Philippe & Le Bail, Marianne, 2020. "How farmers learn to change their weed management practices: Simple changes lead to system redesign in the French West Indies," Agricultural Systems, Elsevier, vol. 179(C).
    20. Deborah Duveskog & Esbern Friis-Hansen & Edward Taylor, 2011. "Farmer Field Schools in Rural Kenya: A Transformative Learning Experience," Journal of Development Studies, Taylor & Francis Journals, vol. 47(10), pages 1529-1544.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Périnelle, Anne & Meynard, Jean-Marc & Scopel, Eric, 2021. "Combining on-farm innovation tracking and participatory prototyping trials to develop legume-based cropping systems in West Africa," Agricultural Systems, Elsevier, vol. 187(C).
    2. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    3. Boulestreau, Yann & Peyras, Claire-Lise & Casagrande, Marion & Navarrete, Mireille, 2022. "Tracking down coupled innovations supporting agroecological vegetable crop protection to foster sustainability transition of agrifood systems," Agricultural Systems, Elsevier, vol. 196(C).
    4. Prost, Lorène, 2021. "Revitalizing agricultural sciences with design sciences," Agricultural Systems, Elsevier, vol. 193(C).
    5. Salembier, Chloé & Segrestin, Blanche & Sinoir, Nicolas & Templier, Joseph & Weil, Benoît & Meynard, Jean-Marc, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Agricultural Systems, Elsevier, vol. 183(C).
    6. Queyrel, Wilfried & Van Inghelandt, Bastien & Colas, Floriane & Cavan, Nicolas & Granger, Sylvie & Guyot, Bérénice & Reau, Raymond & Derrouch, Damien & Chauvel, Bruno & Maillot, Thibault & Colbach, Na, 2023. "Combining expert knowledge and models in participatory workshops with farmers to design sustainable weed management strategies," Agricultural Systems, Elsevier, vol. 208(C).
    7. Henk Berg & Suzanne Phillips & Marcel Dicke & Marjon Fredrix, 2020. "Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1443-1459, December.
    8. Chloé Salembier & Blanche Segrestin & Nicolas Sinoir & Joseph Templier & Benoit Weil & Jean-Marc Meynard, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Post-Print hal-03108292, HAL.
    9. Jinyang Cai & Fengxiang Ding & Yu Hong & Ruifa Hu, 2021. "An Impact Analysis of Farmer Field Schools on Hog Productivity: Evidence from China," Agriculture, MDPI, vol. 11(10), pages 1-14, October.
    10. Lacombe, Camille & Couix, Nathalie & Hazard, Laurent, 2018. "Designing agroecological farming systems with farmers: A review," Agricultural Systems, Elsevier, vol. 165(C), pages 208-220.
    11. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    12. Dimitrios Iakovidis & Yiorgos Gadanakis & Julian Park, 2023. "Farmer and Adviser Perspectives on Business Planning and Control in Mediterranean Agriculture: Evidence from Argolida, Greece," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
    13. Busse, Maria & Zscheischler, Jana & Zoll, Felix & Rogga, Sebastian & Siebert, Rosemarie, 2023. "Co-design approaches in land use related sustainability science – A systematic review," Land Use Policy, Elsevier, vol. 129(C).
    14. Toffolini, Quentin & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Borg, Julie & Enjalbert, Jérôme & Gauffreteau, Arnaud & Goldringer, Isabelle & Lefèvre, Amélie & Loyce, Chantal & Martin, Philippe & , 2020. "Design as a source of renewal in the production of scientific knowledge in crop science," Agricultural Systems, Elsevier, vol. 185(C).
    15. Cavan, Nicolas & Omon, Bertrand & Dubois, Sophie & Toqué, Clotilde & Van Inghelandt, Bastien & Queyrel, Wilfried & Colbach, Nathalie & Angevin, Frédérique, 2023. "Model-based evaluation in terms of weed management and overall sustainability of cropping systems designed with three different approaches," Agricultural Systems, Elsevier, vol. 208(C).
    16. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    17. Toffolini, Quentin & Hannachi, Mourad & Capitaine, Mathieu & Cerf, Marianne, 2023. "Ideal-types of experimentation practices in agricultural Living Labs: Various appropriations of an open innovation model," Agricultural Systems, Elsevier, vol. 208(C).
    18. Rigolot, C. & Quantin, M., 2022. "Biodynamic farming as a resource for sustainability transformations: Potential and challenges," Agricultural Systems, Elsevier, vol. 200(C).
    19. Notaro, Martin & Gary, Christian & Le Coq, Jean-François & Metay, Aurélie & Rapidel, Bruno, 2022. "How to increase the joint provision of ecosystem services by agricultural systems. Evidence from coffee-based agroforestry systems," Agricultural Systems, Elsevier, vol. 196(C).
    20. Annosi, Maria Carmela & Ráez, Rosa María Oliva & Appio, Francesco Paolo & Del Giudice, Teresa, 2022. "An integrative review of innovations in the agricultural sector: The roles of agency, structure, and their dynamic interplay," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:201:y:2022:i:c:s0308521x22000932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.