IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v188y2021ics0308521x20308787.html
   My bibliography  Save this article

Closing sustainability gaps on family farms: Combining on-farm co-innovation and model-based explorations

Author

Listed:
  • Colnago, P.
  • Rossing, W.A.H.
  • Dogliotti, S.

Abstract

In Uruguay sustainability of family farm systems is threatened by soil degradation, low yields and excessive workloads resulting in low labour productivity, low family income and high erosion rates. The productive and environmental performances of most Uruguayan family farms are well below levels achievable with current resource availability. This paper aims to show the productive and environmental improvements simultaneously possible by addressing resource management and organization of the farm system as a whole. We report results from two learning cycles on 4 case study farms and address their interdependence. The first cycle involved on-farm re-design in a co-innovation process that led to significant improvements in the performance of the case study farms. The insights gained during co-innovation work were used to parameterize a bio-economic whole-farm model to explore the space for further performance improvement and to inform future co-innovation processes. The two learning cycles characterized three farm performance levels: the initial farm performance (IniFP), representing the state of the farm at the start of co-innovation, the improved farm performance (ImpFP) at the end of co-innovation, and the attainable farm performance (AttFP) estimated with the FarmImages model. Difference between ImpFP and AttFP represent the sustainability gap. After three years of co-innovation, family income on the four farms improved by 16 to 350%, while labour productivity increased by 11% to 214%. Model explorations showed that significant further improvement in socio-economic results was possible while maintaining soil erosion under the tolerance level. The strategies identified differed among the four farms depending on their resource endowment and the technologies available, confirming the need for a systemic perspective and tailor-made solutions. We show how an inclusive whole-farm approach comprising co-innovation and model-based explorations contributes to connecting scientific insights with practical contextualization to close sustainability gaps on family farms.

Suggested Citation

  • Colnago, P. & Rossing, W.A.H. & Dogliotti, S., 2021. "Closing sustainability gaps on family farms: Combining on-farm co-innovation and model-based explorations," Agricultural Systems, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:agisys:v:188:y:2021:i:c:s0308521x20308787
    DOI: 10.1016/j.agsy.2020.103017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20308787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.103017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colnago, P. & Dogliotti, S., 2020. "Introducing labour productivity analysis in a co-innovation process to improve sustainability in mixed family farming," Agricultural Systems, Elsevier, vol. 177(C).
    2. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    3. Dogliotti, S. & García, M.C. & Peluffo, S. & Dieste, J.P. & Pedemonte, A.J. & Bacigalupe, G.F. & Scarlato, M. & Alliaume, F. & Alvarez, J. & Chiappe, M. & Rossing, W.A.H., 2014. "Co-innovation of family farm systems: A systems approach to sustainable agriculture," Agricultural Systems, Elsevier, vol. 126(C), pages 76-86.
    4. Dogliotti, S. & Rossing, W. A. H. & van Ittersum, M. K., 2004. "Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 80(3), pages 277-302, June.
    5. Andreas Neef & Dieter Neubert, 2011. "Stakeholder participation in agricultural research projects: a conceptual framework for reflection and decision-making," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(2), pages 179-194, June.
    6. Graeub, Benjamin E. & Chappell, M. Jahi & Wittman, Hannah & Ledermann, Samuel & Kerr, Rachel Bezner & Gemmill-Herren, Barbara, 2016. "The State of Family Farms in the World," World Development, Elsevier, vol. 87(C), pages 1-15.
    7. Lipton, Michael, 2005. "The family farm in a globalizing world: the role of crop science in alleviating poverty," 2020 vision discussion papers 40, International Food Policy Research Institute (IFPRI).
    8. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    9. Michalscheck, M. & Groot, J.C.J. & Kotu, B. & Hoeschle-Zeledon, I. & Kuivanen, K. & Descheemaeker, K. & Tittonell, P., 2018. "Model results versus farmer realities. Operationalizing diversity within and among smallholder farm systems for a nuanced impact assessment of technology packages," Agricultural Systems, Elsevier, vol. 162(C), pages 164-178.
    10. Klerkx, Laurens & van Bommel, Severine & Bos, Bram & Holster, Henri & Zwartkruis, Joyce V. & Aarts, Noelle, 2012. "Design process outputs as boundary objects in agricultural innovation projects: Functions and limitations," Agricultural Systems, Elsevier, vol. 113(C), pages 39-49.
    11. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    12. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    13. Martin, G., 2015. "A conceptual framework to support adaptation of farming systems – Development and application with Forage Rummy," Agricultural Systems, Elsevier, vol. 132(C), pages 52-61.
    14. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annemarie Groot-Kormelinck & Jos Bijman & Jacques Trienekens & Laurens Klerkx, 2022. "Producer organizations as transition intermediaries? Insights from organic and conventional vegetable systems in Uruguay," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1277-1300, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    2. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    3. Juventia, Stella D. & Selin Norén, Isabella L.M. & van Apeldoorn, Dirk F. & Ditzler, Lenora & Rossing, Walter A.H., 2022. "Spatio-temporal design of strip cropping systems," Agricultural Systems, Elsevier, vol. 201(C).
    4. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    5. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    6. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    7. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    8. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    9. Eastwood, C.R. & Turner, F.J. & Romera, A.J., 2022. "Farmer-centred design: An affordances-based framework for identifying processes that facilitate farmers as co-designers in addressing complex agricultural challenges," Agricultural Systems, Elsevier, vol. 195(C).
    10. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    11. Ruggia, A. & Dogliotti, S. & Aguerre, V. & Albicette, M.M. & Albin, A. & Blumetto, O. & Cardozo, G. & Leoni, C. & Quintans, G. & Scarlato, S. & Tittonell, P. & Rossing, W.A.H., 2021. "The application of ecologically intensive principles to the systemic redesign of livestock farms on native grasslands: A case of co-innovation in Rocha, Uruguay," Agricultural Systems, Elsevier, vol. 191(C).
    12. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    13. Rossing, Walter A.H. & Albicette, Maria Marta & Aguerre, Veronica & Leoni, Carolina & Ruggia, Andrea & Dogliotti, Santiago, 2021. "Crafting actionable knowledge on ecological intensification: Lessons from co-innovation approaches in Uruguay and Europe," Agricultural Systems, Elsevier, vol. 190(C).
    14. Kamel Elouhichi & Pascal Tillie & Aymeric Ricome & Sergio Gomez-Y-Paloma, 2020. "Modelling Farm-household Livelihoods in Developing Economies: Insights from three country case studies using LSMS-ISA data," JRC Research Reports JRC118822, Joint Research Centre.
    15. Detlefsen, Nina K. & Jensen, Allan Leck, 2007. "Modelling optimal crop sequences using network flows," Agricultural Systems, Elsevier, vol. 94(2), pages 566-572, May.
    16. Ann Florini & Markus Pauli, 2018. "Collaborative governance for the Sustainable Development Goals," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 5(3), pages 583-598, September.
    17. Jieming Zhu & Chen Chen & Lie You, 2022. "Engaging Smallholders in Flower Agribusiness for Inclusive Rural Development: The Case of Yunnan, China," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    18. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    19. Bryceson, Deborah Fahy, 2019. "Gender and generational patterns of African deagrarianization: Evolving labour and land allocation in smallholder peasant household farming, 1980–2015," World Development, Elsevier, vol. 113(C), pages 60-72.
    20. Ingram, Julie & Dwyer, Janet & Gaskell, Peter & Mills, Jane & Wolf, Pieter de, 2018. "Reconceptualising translation in agricultural innovation: A co-translation approach to bring research knowledge and practice closer together," Land Use Policy, Elsevier, vol. 70(C), pages 38-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:188:y:2021:i:c:s0308521x20308787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.