Advanced Search
MyIDEAS: Login to save this article or follow this journal

Multi-objective optimization and design of farming systems

Contents:

Author Info

  • Groot, Jeroen C.J.
  • Oomen, Gerard J.M.
  • Rossing, Walter A.H.
Registered author(s):

    Abstract

    Reconfiguration of farming systems to reach various productive and environmental objectives while meeting farm and policy constraints is complicated by the large array of farm components involved, and the multitude of interrelations among these components. This hampers the evaluation of relations between various farm performance indicators and of consequences of adjustments in farm management. Here we present the FarmDESIGN model, which has been developed to overcome these limitations by coupling a bio-economical farm model that evaluates the productive, economic and environmental farm performance, to a multi-objective optimization algorithm that generates a large set of Pareto-optimal alternative farm configurations. The model was implemented for a 96ha mixed organic farm in the Netherlands that represents an example with relevant complexity, comprising various crop rotations, permanent grasslands and dairy cattle. Inputs were derived from a number of talks with the farmers and from literature. After design-, output- and end-user validation the optimization module of the model was used to explore consequences of reconfiguration. The optimization aimed to maximize the operating profit and organic matter balance, and to minimize the labor requirement and soil nitrogen losses. The model outcomes showed that trade-offs existed among various objectives, and at the same time identified a collection of alternative farm configurations that performed better for all four objectives when compared to the original farm. Relatively small modifications in the farm configuration resulted in considerable improvement of farm performance. This modeling study demonstrated the usefulness of multi-objective optimization in the design of mixed farming systems; the potential of the model to support the learning and decision-making processes of farmers and advisers is discussed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12000558
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Agricultural Systems.

    Volume (Year): 110 (2012)
    Issue (Month): C ()
    Pages: 63-77

    as in new window
    Handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/agsy

    Related research

    Keywords: Agroecosystems; Nutrient cycling; Organic matter; Modeling; Farm management; Evolutionary algorithms;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    2. Cortez-Arriola, José & Groot, Jeroen C.J. & Améndola Massiotti, Ricardo D. & Scholberg, Johannes M.S. & Valentina Mariscal Aguayo, D. & Tittonell, Pablo & Rossing, Walter A.H., 2014. "Resource use efficiency and farm productivity gaps of smallholder dairy farming in North-west Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 126(C), pages 15-24.
    3. Kragt, Marit E. & Robertson, Michael J., 2014. "Quantifying ecosystem services trade-offs from agricultural practices," Ecological Economics, Elsevier, vol. 102(C), pages 147-157.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.