IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v151y2017icp204-216.html
   My bibliography  Save this article

Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach

Author

Listed:
  • Shikuku, Kelvin M.
  • Valdivia, Roberto O.
  • Paul, Birthe K.
  • Mwongera, Caroline
  • Winowiecki, Leigh
  • Läderach, Peter
  • Herrero, Mario
  • Silvestri, Silvia

Abstract

Crop-livestock production systems play an important role in the livelihoods of many rural communities in sub-Saharan Africa (SSA) but are vulnerable to the adverse impacts of climate change. Understanding which farming options will give the highest return on investment in light of climate change is critical information for decision-making. While there is continued investment in testing adaptation options using on-farm experiments, simulation models remain important tools for ‘ex-ante’ assessments of the impacts of proposed climate-smart agricultural technologies (CSA). This study used the Ruminant model and the Trade-offs Analysis model for Multi-Dimensional Impact Assessment (TOA-MD) to assess how improved livestock management options affect the three pillars of CSA: increased productivity, improved food security, and reduced greenhouse gas (GHG) emissions. Our sample was stratified into: 1) households with local cow breeds (n=28); 2) households with improved dairy cow breeds (n=70); and 3) households without dairy cows (n=66). Results showed that the predicted adoption rates for improved livestock feeding among households with improved dairy cows (stratum 2) were likely to be higher compared to households with only local cows (stratum 1). Both households with local cows and those with improved cows had increased income and food security. However, overall poverty reduction was only modest for households with local cows. Expected methane emissions intensity declined with adoption of improved livestock feeding strategies both in stratum 1 and stratum 2, and greater impacts were observed when households in stratum 2 received an additional improved cow breed. Providing a cow to households that were not keeping cows showed substantial economic gains. Additional research is, however, needed to understand why those farms currently do not have cows, which may determine if the predicted adoption rates are feasible.

Suggested Citation

  • Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
  • Handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:204-216
    DOI: 10.1016/j.agsy.2016.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16302189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
    2. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    3. Delgado, Christopher L. & Rosegrant, Mark W. & Steinfeld, Henning & Ehui, Simeon K. & Courbois, Claude, 1999. "Livestock to 2020: the next food revolution," 2020 vision briefs 61, International Food Policy Research Institute (IFPRI).
    4. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    5. Waithaka, M.M. & Thornton, P.K. & Herrero, M. & Shepherd, K.D., 2006. "Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya," Agricultural Systems, Elsevier, vol. 90(1-3), pages 243-271, October.
    6. John M. Antle & Bocar Diagana & Jetse J. Stoorvogel & Roberto O. Valdivia, 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 601-617, October.
    7. Smale, Melinda & Heisey, Paul W & Leathers, Howard D, 1995. "Maize of the Ancestors and Modern Varieties: The Microeconomics of High-Yielding Variety Adoption in Malawi," Economic Development and Cultural Change, University of Chicago Press, vol. 43(2), pages 351-368, January.
    8. Scarpa, Riccardo & Ruto, Eric S. K. & Kristjanson, Patti & Radeny, Maren & Drucker, Adam G. & Rege, John E. O., 2003. "Valuing indigenous cattle breeds in Kenya: an empirical comparison of stated and revealed preference value estimates," Ecological Economics, Elsevier, vol. 45(3), pages 409-426, July.
    9. Zingore, S. & González-Estrada, E. & Delve, R.J. & Herrero, M. & Dimes, J.P. & Giller, K.E., 2009. "An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 57-68, June.
    10. Feder, Gershon, 1980. "Farm Size, Risk Aversion and the Adoption of New Technology under Uncertainty," Oxford Economic Papers, Oxford University Press, vol. 32(2), pages 263-283, July.
    11. Elizabeth Bryan & Claudia Ringler & Barrack Okoba & Jawoo Koo & Mario Herrero & Silvia Silvestri, 2013. "Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? insights from Kenya," Climatic Change, Springer, vol. 118(2), pages 151-165, May.
    12. Thornton, P.K. & van de Steeg, J. & Notenbaert, A. & Herrero, M., 2009. "The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know," Agricultural Systems, Elsevier, vol. 101(3), pages 113-127, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongwane, Mphethe Isaac & Moeletsi, Mokhele Edmond, 2018. "A review of greenhouse gas emissions from the agriculture sector in Africa," Agricultural Systems, Elsevier, vol. 166(C), pages 124-134.
    2. Phemelo Tamasiga & Helen Onyeaka & Adenike Akinsemolu & Malebogo Bakwena, 2023. "The Inter-Relationship between Climate Change, Inequality, Poverty and Food Security in Africa: A Bibliometric Review and Content Analysis Approach," Sustainability, MDPI, vol. 15(7), pages 1-35, March.
    3. Victor O. Abegunde & Ajuruchukwu Obi, 2022. "The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    4. Pomi Shahbaz & Azhar Abbas & Babar Aziz & Bader Alhafi Alotaibi & Abou Traore, 2022. "Nexus between Climate-Smart Livestock Production Practices and Farmers’ Nutritional Security in Pakistan: Exploring Level, Linkages, and Determinants," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    5. Twine, Edgar E. & Omore, Amos & Githinji, Julius, 2018. "Uncertainty in milk production by smallholders in Tanzania and its implications for investment," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(1).
    6. Paul, B.K. & Epper, C.A. & Tschopp, D.J. & Long, C.T.M. & Tungani, V. & Burra, D. & Hok, L. & Phengsavanh, P. & Douxchamps, S., 2022. "Crop-livestock integration provides opportunities to mitigate environmental trade-offs in transitioning smallholder agricultural systems of the Greater Mekong Subregion," Agricultural Systems, Elsevier, vol. 195(C).
    7. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    8. Germer, Leah A. & van Middelaar, Corina E. & Oosting, Simon J. & Gerber, Pierre J., 2023. "When and where are livestock climate-smart? A spatial-temporal framework for comparing the climate change and food security synergies and tradeoffs of Sub-Saharan African livestock systems," Agricultural Systems, Elsevier, vol. 210(C).
    9. Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
    10. World Bank Group, 2019. "Cote d’Ivoire Climate-Smart Agriculture Investment Plan [Plan d’Investissement d’une Agriculture Intelligente face au Climat en Côte d’Ivoire]," World Bank Publications - Reports 32745, The World Bank Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    2. Valdivia, Roberto O. & Antle, John M. & Stoorvogel, Jetse J., 2012. "Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 17-29.
    3. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    4. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2014. "Targeting REDD+: An Empirical Analysis of Carbon Sequestration in Indonesia," World Development, Elsevier, vol. 64(C), pages 781-790.
    5. John Antle & Stephen Ogle, 2012. "Influence of soil C, N 2 O and fuel use on GHG mitigation with no-till adoption," Climatic Change, Springer, vol. 111(3), pages 609-625, April.
    6. Hennessy, David A., 1997. "Stochastic technologies and the adoption decision," Journal of Development Economics, Elsevier, vol. 54(2), pages 437-453, December.
    7. Murshed-E-Jahan, K. & Crissman, C. & Antle, J., 2013. "Economic and social impacts of Integrated Aquaculture-Agriculture technologies in Bangladesh," Monographs, The WorldFish Center, number 40077, April.
    8. Rigolot, C. & de Voil, P. & Douxchamps, S. & Prestwidge, D. & Van Wijk, M. & Thornton, P.K. & Rodriguez, D. & Henderson, B. & Medina, D. & Herrero, M., 2017. "Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso," Agricultural Systems, Elsevier, vol. 151(C), pages 217-224.
    9. Erqi Xu & Hongqi Zhang & Yang Yang & Ying Zhang, 2014. "Integrating a Spatially Explicit Tradeoff Analysis for Sustainable Land Use Optimal Allocation," Sustainability, MDPI, vol. 6(12), pages 1-22, December.
    10. Claessens, L. & Stoorvogel, J.J. & Antle, J.M., 2008. "Ex ante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach," Agricultural Systems, Elsevier, vol. 99(1), pages 13-22, December.
    11. Jiang, Yanan & Guan, Dongjie & He, Xiujuan & Yin, Boling & Zhou, Lilei & Sun, Lingli & Huang, Danan & Li, Zihui & Zhang, Yanjun, 2022. "Quantification of the coupling relationship between ecological compensation and ecosystem services in the Yangtze River Economic Belt, China," Land Use Policy, Elsevier, vol. 114(C).
    12. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    13. Nicholas Magnan & Abby M. Love & Fulgence J. Mishili & Ganna Sheremenko, 2020. "Husbands’ and wives’ risk preferences and improved maize adoption in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 743-758, September.
    14. Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
    15. Paul, B.K. & Epper, C.A. & Tschopp, D.J. & Long, C.T.M. & Tungani, V. & Burra, D. & Hok, L. & Phengsavanh, P. & Douxchamps, S., 2022. "Crop-livestock integration provides opportunities to mitigate environmental trade-offs in transitioning smallholder agricultural systems of the Greater Mekong Subregion," Agricultural Systems, Elsevier, vol. 195(C).
    16. Nedumaran, S. & Kadiyala, D.M. & Srigiri, S.R. & Roberto, V. & McDermid, S., 2018. "Climate change impacts and vulnerability of fallow-chickpea based farm households in India: Assessment using Integrated modeling approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277100, International Association of Agricultural Economists.
    17. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    18. M. Melissa Rojas-Downing & A. Pouyan Nejadhashemi & Mohammad Abouali & Fariborz Daneshvar & Sabah Anwer Dawood Al Masraf & Matthew R. Herman & Timothy Harrigan & Zhen Zhang, 2018. "Pasture diversification to combat climate change impacts on grazing dairy production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 405-431, March.
    19. Gedikoglu, Haluk & McCann, Laura M.J. & Artz, Georgeanne M., 2011. "Off-Farm Employment Effects on Adoption of Nutrient Management Practices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(2), pages 1-14, August.
    20. Tristan Le Cotty & Bruno Dorin, 2012. "A global foresight on food crop needs for livestock," Post-Print hal-00800715, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:151:y:2017:i:c:p:204-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.