IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12177-d925873.html
   My bibliography  Save this article

Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas

Author

Listed:
  • Hameeda Sultan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Jinyan Zhan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Wajid Rashid

    (Department of Environmental and Conservation Sciences, University of Swat, Mingora Swat 19130, Pakistan)

  • Xi Chu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Eve Bohnett

    (Department of Biology, San Diego State University, San Diego, CA 92182, USA)

Abstract

The Himalayan region is a fragile high mountain landscape where the population experiences acute vulnerability within a complex coupled human–natural system due to environmental, social, and economic linkages. The lack of significant regional and spatial knowledge of multi-faceted vulnerabilities hinders any potential recommendations to address these vulnerabilities. We systematically reviewed the literature to recommend mitigation interventions based on the region’s socio-economic and ecological vulnerability research to date. We applied the PRISMA (Preferred Reporting of Items for Systematic Review and Meta-Analysis) criteria to search for results from four comprehensive databases. For our assessment, we compiled a final sample ( n = 59) of vulnerability research papers to examine the vulnerability types, spatial variation, assessment methodology, and significant drivers of change. Our study represented all Himalayan countries, namely, India, Nepal, Pakistan, China, and Bhutan. More than half of the vulnerability studies were conducted in the central Himalayan region, a quarter in the western Himalayas, and a few in the eastern Himalayas. Our review revealed that the primary drivers of change were climate change, land use/land cover, and glacial lake formation. The vulnerability assessments in the Himalayan region primarily used social science methods as compared to natural science methods. While the vulnerability studies seldom assessed mitigation interventions, our analysis identified fourteen recommendations. The recommended interventions mainly included policy interventions, livelihood improvement, and adaptation measures. This study emphasized that sustainable development requires cross-sectoral interventions to manage existing resources and mitigate the confronting vulnerabilities of the region.

Suggested Citation

  • Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12177-:d:925873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hameeda Sultan & Wajid Rashid & Jianbin Shi & Inam ur Rahim & Mohammad Nafees & Eve Bohnett & Sajid Rashid & Muhammad Tariq Khan & Izaz Ali Shah & Heesup Han & Antonio Ariza-Montes, 2022. "Horizon Scan of Transboundary Concerns Impacting Snow Leopard Landscapes in Asia," Land, MDPI, vol. 11(2), pages 1-22, February.
    2. Meghnath Dhimal & Dinesh Bhandari & Khem B. Karki & Srijan Lal Shrestha & Mukti Khanal & Raja Ram Pote Shrestha & Sushma Dahal & Bihungum Bista & Kristie L. Ebi & Guéladio Cissé & Amir Sapkota & David, 2022. "Effects of Climatic Factors on Diarrheal Diseases among Children below 5 Years of Age at National and Subnational Levels in Nepal: An Ecological Study," IJERPH, MDPI, vol. 19(10), pages 1-12, May.
    3. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    4. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    5. Mark Davies & Christophe Béné & Alexander Arnall & Thomas Tanner & Andrew Newsham & Cristina Coirolo, 2013. "Promoting Resilient Livelihoods through Adaptive Social Protection: Lessons from 124 programmes in South Asia," Development Policy Review, Overseas Development Institute, vol. 31(1), pages 27-58, January.
    6. Bhattarai, Sushma & Regmi, Bimal Raj & Pant, Basant & Uprety, Dharam Raj & Maraseni, Tek, 2021. "Sustaining ecosystem based adaptation: The lessons from policy and practices in Nepal," Land Use Policy, Elsevier, vol. 104(C).
    7. Siddique Ullah & Adnan Ahmad Tahir & Tahir Ali Akbar & Quazi K. Hassan & Ashraf Dewan & Asim Jahangir Khan & Mudassir Khan, 2019. "Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    8. Siqi Sun & Yihe Lü & Da Lü & Cong Wang, 2021. "Quantifying the Variability of Forest Ecosystem Vulnerability in the Largest Water Tower Region Globally," IJERPH, MDPI, vol. 18(14), pages 1-18, July.
    9. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    10. Amir Hossein Ahmadi Hekmatikar & João Batista Ferreira Júnior & Shahnaz Shahrbanian & Katsuhiko Suzuki, 2022. "Functional and Psychological Changes after Exercise Training in Post-COVID-19 Patients Discharged from the Hospital: A PRISMA-Compliant Systematic Review," IJERPH, MDPI, vol. 19(4), pages 1-11, February.
    11. Fahad, Shah & Wang, Jianling, 2018. "Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan," Land Use Policy, Elsevier, vol. 79(C), pages 301-309.
    12. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    13. Suman Aryal & Geoff Cockfield & Tek Maraseni, 2014. "Vulnerability of Himalayan transhumant communities to climate change," Climatic Change, Springer, vol. 125(2), pages 193-208, July.
    14. Asim Anwar & Muhammad Ayub & Noman Khan & Antoine Flahault, 2019. "Nexus between Air Pollution and Neonatal Deaths: A Case of Asian Countries," IJERPH, MDPI, vol. 16(21), pages 1-10, October.
    15. Fang Su & Nini Song & Nannan Ma & Altynbek Sultanaliev & Jing Ma & Bing Xue & Shah Fahad, 2021. "An Assessment of Poverty Alleviation Measures and Sustainable Livelihood Capability of Farm Households in Rural China: A Sustainable Livelihood Approach," Agriculture, MDPI, vol. 11(12), pages 1-16, December.
    16. Westermann, Olaf & Förch, Wiebke & Thornton, Philip & Körner, Jana & Cramer, Laura & Campbell, Bruce, 2018. "Scaling up agricultural interventions: Case studies of climate-smart agriculture," Agricultural Systems, Elsevier, vol. 165(C), pages 283-293.
    17. Xueru Zhang & Qiuyue Long & Dong Kun & Dazhi Yang & Liu Lei, 2022. "Comprehensive Risk Assessment of Typical High-Temperature Cities in Various Provinces in China," IJERPH, MDPI, vol. 19(7), pages 1-17, April.
    18. Roopam Shukla & Kamna Sachdeva & P. K. Joshi, 2018. "Demystifying vulnerability assessment of agriculture communities in the Himalayas: a systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 409-429, March.
    19. Wajid Rashid & Jianbin Shi & Inam ur Rahim & Muhammad Qasim & Muhammad Naveed Baloch & Eve Bohnett & Fangyuan Yang & Imran Khan & Bilal Ahmad, 2021. "Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    20. Meine van Noordwijk & Vincent Gitz & Peter A. Minang & Sonya Dewi & Beria Leimona & Lalisa Duguma & Nathanaël Pingault & Alexandre Meybeck, 2020. "People-Centric Nature-Based Land Restoration through Agroforestry: A Typology," Land, MDPI, vol. 9(8), pages 1-29, July.
    21. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    22. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    23. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    24. Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixin Hu & Mansoor Ahmed Koondhar & Rong Kong, 2023. "From Traditional to Smart: Exploring the Effects of Smart Agriculture on Green Production Technology Diversity in Family Farms," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    2. Faiqa Falak & Farsom Ayub & Zunaira Zahid & Zouina Sarfraz & Azza Sarfraz & Karla Robles-Velasco & Ivan Cherrez-Ojeda, 2022. "Indicators of Climate Change, Geospatial and Analytical Mapping of Trends in India, Pakistan and Bangladesh: An Observational Study," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    3. Nowacki Marek, 2023. "Mountaineering in the Himalayas: A Comprehensive Analysis Through a Literature Review and Research Profiling," Polish Journal of Sport and Tourism, Sciendo, vol. 30(4), pages 3-12, December.
    4. Zongxiang Wang & Tianhao Chen & Wei Li & Kai Zhang & Jianwu Qi, 2023. "Construction and Demonstration of the Evaluation System of Public Participation Level in Urban Planning Based on the Participatory Video of ‘General Will—Particular Will’," Sustainability, MDPI, vol. 15(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    2. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    3. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    4. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    5. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    6. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    7. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. M. Rezaul Islam, 2018. "Climate Change, Natural Disasters and Socioeconomic Livelihood Vulnerabilities: Migration Decision Among the Char Land People in Bangladesh," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(2), pages 575-593, April.
    9. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    10. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    11. Nikole Guerrero & Marta Contreras & Alondra Chamorro & Carolina Martínez & Tomás Echaveguren, 2023. "Social vulnerability in Chile: challenges for multi-scale analysis and disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3067-3102, July.
    12. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2012. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 615-639, October.
    13. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2013. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 497-521, January.
    14. Mohd Idris Nor Diana & Nurfashareena Muhamad & Mohd Raihan Taha & Ashraf Osman & Md. Mahmudul Alam, 2021. "Social Vulnerability Assessment for Landslide Hazards in Malaysia: A Systematic Review Study," Land, MDPI, vol. 10(3), pages 1-19, March.
    15. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    16. Muhammad Khurshid & Mohammad Nafees & Abdullah Khan & He Yin & Wahid Ullah & Wajid Rashid & Heesup Han & Akhtar Hussain Lashari, 2022. "Off-Season Agriculture Encroachment in the Uplands of Northern Pakistan: Need for Sustainable Land Management," Land, MDPI, vol. 11(4), pages 1-14, April.
    17. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    18. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    19. Shah Fahad & Mohammad Shakhawat Hossain & Nguyen Thi Lan Huong & Abdelmohsen A. Nassani & Mohamed Haffar & Muhammad Rashid Naeem, 2023. "An assessment of rural household vulnerability and resilience in natural hazards: evidence from flood prone areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5561-5577, June.
    20. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12177-:d:925873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.