IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v76y2008i5p979-1016.html
   My bibliography  Save this article

Testing Models of Low-Frequency Variability

Author

Listed:
  • Ulrich K. Müller
  • Mark W. Watson

Abstract

We develop a framework to assess how successfully standard time series models explain low-frequency variability of a data series. The low-frequency information is extracted by computing a finite number of weighted averages of the original data, where the weights are low-frequency trigonometric series. The properties of these weighted averages are then compared to the asymptotic implications of a number of common time series models. We apply the framework to twenty U.S. macroeconomic and financial time series using frequencies lower than the business cycle. Copyright 2008 The Econometric Society.

Suggested Citation

  • Ulrich K. Müller & Mark W. Watson, 2008. "Testing Models of Low-Frequency Variability," Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
  • Handle: RePEc:ecm:emetrp:v:76:y:2008:i:5:p:979-1016
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA6814
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    2. Martin Lettau & Sydney C. Ludvigson, 2004. "Understanding Trend and Cycle in Asset Values: Reevaluating the Wealth Effect on Consumption," American Economic Review, American Economic Association, vol. 94(1), pages 276-299, March.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    5. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    6. Pesavento, Elena & Rossi, Barbara, 2005. "Do Technology Shocks Drive Hours Up Or Down? A Little Evidence From An Agnostic Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 9(4), pages 478-488, September.
    7. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    8. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    9. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    10. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(2), pages 210-230, August.
    11. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    12. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    13. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    14. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    15. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    16. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    17. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    18. Balke, Nathan S & Gordon, Robert J, 1989. "The Estimation of Prewar Gross National Product: Methodology and New Evidence," Journal of Political Economy, University of Chicago Press, vol. 97(1), pages 38-92, February.
    19. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    20. Neville Francis & Valerie A. Ramey, 2002. "Is the Technology-Driven Real Business Cycle Hypothesis Dead?," NBER Working Papers 8726, National Bureau of Economic Research, Inc.
    21. Lothian, James R & Taylor, Mark P, 1996. "Real Exchange Rate Behavior: The Recent Float from the Perspective of the Past Two Centuries," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 488-509, June.
    22. Mark W. Watson, 1999. "Explaining the increased variability in long-term interest rates," Economic Quarterly, Federal Reserve Bank of Richmond, issue Fall, pages 71-96.
    23. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    24. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    25. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    26. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    27. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    28. Davidson, James, 2002. "Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 243-269, February.
    29. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    30. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    2. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    3. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    4. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    5. Gil-Alana, Luis A. & Mudida, Robert & Zerbo, Eleazar, 2021. "GDP per capita IN SUB-SAHARAN Africa: A time series approach using long memory," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 175-190.
    6. Ulrich K. Müller & Mark W. Watson, 2020. "Low-Frequency Analysis of Economic Time Series," Working Papers 2020-13, Princeton University. Economics Department..
    7. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    8. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    9. Dufourt, Frederic, 2005. "Demand and productivity components of business cycles: Estimates and implications," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1089-1105, September.
    10. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    11. Laura Mayoral, 2005. "Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks," Economics Working Papers 956, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Nesmith Travis D & Jones Barry E, 2008. "Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-18, March.
    13. Aaron D. Smallwood, 2016. "A Monte Carlo Investigation of Unit Root Tests and Long Memory in Detecting Mean Reversion in I(0) Regime Switching, Structural Break, and Nonlinear Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 986-1012, June.
    14. Ghent, Andra, 2006. "Comparing Models of Macroeconomic Fluctuations: How Big Are the Differences?," MPRA Paper 180, University Library of Munich, Germany.
    15. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    16. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    17. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    18. Caner, M. & Kilian, L., 2001. "Size distortions of tests of the null hypothesis of stationarity: evidence and implications for the PPP debate," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 639-657, October.
    19. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    20. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:76:y:2008:i:5:p:979-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.