IDEAS home Printed from https://ideas.repec.org/a/aea/aejpol/v13y2021i3p316-44.html
   My bibliography  Save this article

The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles

Author

Listed:
  • Stephen P. Holland
  • Erin T. Mansur
  • Andrew J. Yates

Abstract

Electric vehicles have a unique potential to transform personal transportation. We analyze this transition with a dynamic model capturing falling costs of electric vehicles, decreasing pollution from electricity, and increasing vehicle substitutability. Our calibration to the US market shows a transition from gasoline vehicles is not optimal at current substitutability: a gasoline vehicle production ban would have large deadweight loss. At higher substitutability, a ban can reduce deadweight loss from vehicle mix and adoption timing inefficiencies. A cumulative gasoline vehicle production quota has smaller deadweight loss, and an electric vehicle purchase subsidy is more robust to regulator misperceptions about substitutability.

Suggested Citation

  • Stephen P. Holland & Erin T. Mansur & Andrew J. Yates, 2021. "The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 316-344, August.
  • Handle: RePEc:aea:aejpol:v:13:y:2021:i:3:p:316-44
    DOI: 10.1257/pol.20200120
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20200120
    Download Restriction: no

    File URL: https://doi.org/10.3886/E120531V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20200120.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20200120.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/pol.20200120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shlomo Kalish & Gary L. Lilien, 1983. "Optimal Price Subsidy Policy for Accelerating the Diffusion Of Innovation," Marketing Science, INFORMS, vol. 2(4), pages 407-420.
    2. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    3. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 777-800, November.
    4. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    5. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    6. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    7. Lucas W. Davis, 2019. "Evidence of a homeowner-renter gap for electric vehicles," Applied Economics Letters, Taylor & Francis Journals, vol. 26(11), pages 927-932, June.
    8. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    9. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
    10. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    11. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2016. "Optimal timing of carbon capture policies under learning-by-doing," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 20-37.
    12. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    13. Yiyi Zhou & Shanjun Li, 2018. "Technology Adoption and Critical Mass: The Case of the U.S. Electric Vehicle Market," Journal of Industrial Economics, Wiley Blackwell, vol. 66(2), pages 423-480, June.
    14. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Correction to: Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 801-801, November.
    15. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    16. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    17. Jianwei Xing & Benjamin Leard & Shanjun Li, 2019. "What Does an Electric Vehicle Replace?," NBER Working Papers 25771, National Bureau of Economic Research, Inc.
    18. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuchao Li & Lijie Zhang & Jiamin Liu & Xinpei Qiao, 2023. "Can the Dual-Credit Policy Help China’s New Energy Vehicle Industry Achieve Corner Overtaking?," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    2. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    3. Haywood, Luke & Jakob, Michael, 2023. "The role of the emissions trading scheme 2 in the policy mix to decarbonize road transport in the European Union," Transport Policy, Elsevier, vol. 139(C), pages 99-108.
    4. Latino, Carmelo & Pelizzon, Loriana & Riedel, Max, 2023. "How to green the European Auto ABS market? A literature survey," SAFE Working Paper Series 391, Leibniz Institute for Financial Research SAFE.
    5. Randall Wigle, Istvan Kery, 2021. "Rationalizing Policy Support for Zero Emission Vehicles in Canada," LCERPA Working Papers bm0128, Laurier Centre for Economic Research and Policy Analysis.
    6. Zhang, Xiaoyun & Dong, Feng, 2023. "What affects residents’ behavioral intentions to ban gasoline vehicles? Evidence from an emerging economy," Energy, Elsevier, vol. 263(PB).
    7. Leard, Benjamin & Wu, Yidi, 2023. "New Passenger Vehicle Demand Elasticities: Estimates and Policy Implications," RFF Working Paper Series 23-33, Resources for the Future.
    8. Geoffrey Heal, 2022. "Economic Aspects of the Energy Transition," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 5-21, September.
    9. Shanjun Li & Xianglei Zhu & Yiding Ma & Fan Zhang & Hui Zhou, 2022. "The Role of Government in the Market for Electric Vehicles: Evidence from China," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(2), pages 450-485, March.
    10. Hoarau, Quentin & Meunier, Guy, 2023. "Coordination of sectoral climate policies and life cycle emissions," Resource and Energy Economics, Elsevier, vol. 72(C).
    11. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    12. Gøril L. Andreassen & Jo Thori Lind, 2022. "Climate, Technology and Value: Insights from the First Decade with Mass-Consumption of Electric Vehicles," CESifo Working Paper Series 9814, CESifo.
    13. Benjamin Carton & Christopher Evans & Mr. Dirk V Muir & Simon Voigts, 2023. "Getting to Know GMMET: The Global Macroeconomic Model for the Energy Transition," IMF Working Papers 2023/269, International Monetary Fund.
    14. Johannes Mauritzen, 2023. "With great power (prices) comes great tail pipe emissions? \\ A natural experiment of electricity prices and electric car adoption," Papers 2304.01709, arXiv.org.
    15. Liu, Yajie & Dong, Feng & Li, Guoqing & Huang, Jianheng & Yang, Shanshan & Wang, Yulong, 2023. "Public willingness to support the policy of banning gasoline vehicles sales and its internal mechanism," Energy, Elsevier, vol. 271(C).
    16. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    17. Luo, Qi & Yin, Yunlei & Chen, Pengyu & Zhan, Zhenfei & Saigal, Romesh, 2022. "Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption," Transport Policy, Elsevier, vol. 129(C), pages 117-136.
    18. Lim, Sijeong & Dolsak, Nives & Prakash, Aseem & Tanaka, Seiki, 2022. "Distributional concerns and public opinion: EV subsidies in the U.S. and Japan," Energy Policy, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    2. Kenneth Gillingham & Marten Ovaere & Stephanie M. Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," NBER Working Papers 28620, National Bureau of Economic Research, Inc.
    3. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    4. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).
    5. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).
    6. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    7. James Archsmith & Erich Muehlegger & David S. Rapson, 2022. "Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 71-110.
    8. Shanjun Li & Xianglei Zhu & Yiding Ma & Fan Zhang & Hui Zhou, 2022. "The Role of Government in the Market for Electric Vehicles: Evidence from China," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(2), pages 450-485, March.
    9. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    10. Li,Shanjun & Zhu,Xianglei & Ma,Yiding & Zhang,Fan & Zhou,Hui, 2020. "The Role of Government in the Market for Electric Vehicles : Evidence from China," Policy Research Working Paper Series 9359, The World Bank.
    11. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    12. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    13. Lohawala, Nafisa, 2023. "Roadblock or Accelerator? The Effect of Electric Vehicle Subsidy Elimination," RFF Working Paper Series 23-13, Resources for the Future.
    14. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "The Environmental Benefits from Transportation Electrification: Urban Buses," NBER Working Papers 27285, National Bureau of Economic Research, Inc.
    15. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    16. Zunian Luo, 2022. "Cap or No Cap? What Can Governments Do to Promote EV Sales?," Papers 2212.08137, arXiv.org.
    17. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    18. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    19. Huwe, Vera & Gessner, Johannes, 2020. "Are there rebound effects from electric vehicle adoption? Evidence from German household data," ZEW Discussion Papers 20-048, ZEW - Leibniz Centre for European Economic Research.
    20. James Bushnell & David Rapson, 2022. "The Electric Ceiling: Limits and Costs of Full Electrification," Working Papers 2220, Federal Reserve Bank of Dallas.

    More about this item

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejpol:v:13:y:2021:i:3:p:316-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.