IDEAS home Printed from https://ideas.repec.org/r/zbw/sfb373/199687.html
   My bibliography  Save this item

Smoothing Splines And Shape Restrictions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
  2. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 14/17, Institute for Fiscal Studies.
  3. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
  4. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
  5. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
  6. Gianluca Cassese, 2014. "Option Pricing in an Imperfect World," Papers 1406.0412, arXiv.org, revised Sep 2016.
  7. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
  8. Gianluca Cassese, 2019. "Nonparametric Estimates Of Option Prices And Related Quantities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-29, November.
  9. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
  10. Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
  11. Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2012. "Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints," Department of Economics Working Papers 2012-08, McMaster University.
  12. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
  13. Denis Chetverikov & Daniel Wilhelm, 2016. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 48/16, Institute for Fiscal Studies.
  14. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
  15. Gianluca Cassese, 2015. "Non Parametric Estimates of Option Prices Using Superhedging," Papers 1502.03978, arXiv.org.
  16. repec:hum:wpaper:sfb649dp2005-019 is not listed on IDEAS
  17. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
  18. Tatiana Komarova & Javier Hidalgo, 2019. "Testing nonparametric shape restrictions," Papers 1909.01675, arXiv.org, revised Jun 2020.
  19. Ana Colubi & J. Santos Dominguez-Menchero & Gil Gonzalez-Rodriguez, 2018. "New designs to consistently estimate the isotonic regression," Computational Statistics, Springer, vol. 33(2), pages 639-658, June.
  20. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
  21. Christophe Abraham & Khader Khadraoui, 2015. "Bayesian regression with B-splines under combinations of shape constraints and smoothness properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 150-170, May.
  22. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
  23. Komarova, Tatiana & Hidalgo, Javier, 2023. "Testing nonparametric shape restrictions," LSE Research Online Documents on Economics 121410, London School of Economics and Political Science, LSE Library.
  24. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
  25. Rossini, Jacopo & Canale, Antonio, 2019. "Quantifying prediction uncertainty for functional-and-scalar to functional autoregressive models under shape constraints," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 221-231.
  26. Dette, Holger & Neumeyer, Natalie & Pilz, Kay F., 2003. "A simple nonparametric estimator of a monotone regression function," Technical Reports 2003,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  27. Antoniadis, Anestis & Bigot, Jéremie & Gijbels, Irène, 2007. "Penalized wavelet monotone regression," Statistics & Probability Letters, Elsevier, vol. 77(16), pages 1608-1621, October.
  28. Dette, Holger & Birke, Melanie, 2005. "A note on estimating a monotone regression by combining kernel and density estimates," Technical Reports 2005,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  29. Denis Chetverikov & Daniel Wilhelm, 2015. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 39/15, Institute for Fiscal Studies.
  30. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
  31. Mary Meyer & Amber Hackstadt & Jennifer Hoeting, 2011. "Bayesian estimation and inference for generalised partial linear models using shape-restricted splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 867-884.
  32. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.