IDEAS home Printed from https://ideas.repec.org/r/taf/jnlasa/v111y2016i516p1775-1790.html
   My bibliography  Save this item

Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
  2. Zhongqi Liang & Caiya Zhang & Linjun Xu, 2024. "Model averaging for right censored data with measurement error," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 501-527, April.
  3. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
  4. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
  5. Qingfeng Liu & Qingsong Yao & Guoqing Zhao, 2020. "Model averaging estimation for conditional volatility models with an application to stock market volatility forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 841-863, August.
  6. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
  7. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
  8. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
  9. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
  10. Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
  11. Xianwen Sun & Lixin Zhang, 2024. "Model averaging estimation for nonparametric varying-coefficient models with multiplicative heteroscedasticity," Statistical Papers, Springer, vol. 65(3), pages 1375-1409, May.
  12. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
  13. Zhihao Zhao & Xinyu Zhang & Guohua Zou & Alan T. K. Wan & Geoffrey K. F. Tso, 2024. "Model averaging for estimating treatment effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(1), pages 73-92, February.
  14. Kevin Huynh, 2024. "Weighted-Average Least Squares for Negative Binomial Regression," Papers 2404.11324, arXiv.org.
  15. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
  16. Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
  17. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
  18. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
  19. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
  20. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
  21. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
  22. Zhao, Shangwei & Zhou, Jianhong & Yang, Guangren, 2019. "Averaging estimators for discrete choice by M-fold cross-validation," Economics Letters, Elsevier, vol. 174(C), pages 65-69.
  23. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
  24. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
  25. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2019. "Comments on “Unobservable Selection and Coefficient Stability: Theory and Evidence” and “Poorly Measured Confounders are More Useful on the Left Than on the Right”," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 217-222, April.
  26. Yundong Tu & Siwei Wang, 2023. "Variable Screening and Model Averaging for Expectile Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 574-598, June.
  27. Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
  28. Peng, Rong & Lu, Zudi, 2024. "Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification," Econometrics and Statistics, Elsevier, vol. 31(C), pages 19-37.
  29. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
  30. Jie Zeng & Weihu Cheng & Guozhi Hu, 2023. "Optimal Model Averaging Estimation for the Varying-Coefficient Partially Linear Models with Missing Responses," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
  31. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
  32. Cong Li & Qi Li & Jeffrey Racine & DAIQIANG ZHANG, 2017. "Optimal Model Averaging Of Varying Coefficient Models," Department of Economics Working Papers 2017-01, McMaster University.
  33. Seojeong Lee & Youngki Shin, 2021. "Complete subset averaging with many instruments," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
  34. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
  35. Tong Zeng, 2024. "Frequentist model averaging in the generalized multinomial logit model," Computational Statistics, Springer, vol. 39(2), pages 605-627, April.
  36. Yang Feng & Qingfeng Liu, 2020. "Nested Model Averaging on Solution Path for High-dimensional Linear Regression," Papers 2005.08057, arXiv.org.
  37. Seojeong Lee & Youngki Shin, 2018. "Optimal Estimation with Complete Subsets of Instruments," Department of Economics Working Papers 2018-15, McMaster University.
  38. Fang, Fang & Liu, Minhan, 2020. "Limit of the optimal weight in least squares model averaging with non-nested models," Economics Letters, Elsevier, vol. 196(C).
  39. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
  40. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
  41. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
  42. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
  43. Guo, Chaohui & Lv, Jing & Wu, Jibo, 2021. "Composite quantile regression for ultra-high dimensional semiparametric model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  44. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
  45. Wang, Weiwei & Zhang, Qi & Zhang, Xinyu & Li, Xinmin, 2021. "Model averaging based on generalized method of moments," Economics Letters, Elsevier, vol. 200(C).
  46. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  47. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  48. Chen, Xingyi & Li, Haiqi & Zhang, Jing, 2023. "Complete subset averaging approach for high-dimensional generalized linear models," Economics Letters, Elsevier, vol. 226(C).
  49. Xie, Tian, 2017. "Heteroscedasticity-robust model screening: A useful toolkit for model averaging in big data analytics," Economics Letters, Elsevier, vol. 151(C), pages 119-122.
  50. Zhao, Shangwei & Ullah, Aman & Zhang, Xinyu, 2018. "A class of model averaging estimators," Economics Letters, Elsevier, vol. 162(C), pages 101-106.
  51. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  52. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
  53. Fang, Fang & Yang, Qiwei & Tian, Wenling, 2022. "Cross-validation for selecting the penalty factor in least squares model averaging," Economics Letters, Elsevier, vol. 217(C).
  54. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
  55. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
  56. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
  57. Zhongqi Liang & Qihua Wang, 2023. "A robust model averaging approach for partially linear models with responses missing at random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1933-1952, December.
  58. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
  59. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2025. "State-Varying Model Averaging Prediction," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202507, University of Kansas, Department of Economics.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.