IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i2d10.1007_s10985-024-09620-3.html
   My bibliography  Save this article

Model averaging for right censored data with measurement error

Author

Listed:
  • Zhongqi Liang

    (Hangzhou City University
    Zhejiang University)

  • Caiya Zhang

    (Hangzhou City University)

  • Linjun Xu

    (Zhejiang Gongshang University)

Abstract

This paper studies a novel model averaging estimation issue for linear regression models when the responses are right censored and the covariates are measured with error. A novel weighted Mallows-type criterion is proposed for the considered issue by introducing multiple candidate models. The weight vector for model averaging is selected by minimizing the proposed criterion. Under some regularity conditions, the asymptotic optimality of the selected weight vector is established in terms of its ability to achieve the lowest squared loss asymptotically. Simulation results show that the proposed method is superior to the other existing related methods. A real data example is provided to supplement the actual performance.

Suggested Citation

  • Zhongqi Liang & Caiya Zhang & Linjun Xu, 2024. "Model averaging for right censored data with measurement error," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 501-527, April.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09620-3
    DOI: 10.1007/s10985-024-09620-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09620-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09620-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    3. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    4. Li, Mengyu & Wang, Xiaoguang, 2023. "Semiparametric model averaging method for survival probability predictions of patients," Computational Statistics & Data Analysis, Elsevier, vol. 185(C).
    5. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    6. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    7. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    8. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Man†Lai Tang & Nian†Sheng Tang & Pu†Ying Zhao & Hongtu Zhu, 2018. "Efficient Robust Estimation for Linear Models with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 366-381, June.
    10. Tomohiro Ando & Ker-Chau Li, 2014. "A Model-Averaging Approach for High-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 254-265, March.
    11. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Xinyu Zhang & Yanyuan Ma & Raymond J. Carroll, 2019. "MALMEM: model averaging in linear measurement error models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 763-779, September.
    13. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    14. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    15. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, June.
    16. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    17. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    18. Xinyu Zhang & Haiying Wang & Yanyuan Ma & Raymond J. Carroll, 2017. "Linear Model Selection When Covariates Contain Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1553-1561, October.
    19. Rong Zhu & Alan T. K. Wan & Xinyu Zhang & Guohua Zou, 2019. "A Mallows-Type Model Averaging Estimator for the Varying-Coefficient Partially Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 882-892, April.
    20. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    21. Jiang Du & Zhongzhan Zhang & Tianfa Xie, 2017. "Focused information criterion and model averaging in censored quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 547-570, July.
    22. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    23. Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    24. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    2. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
    3. Xianwen Sun & Lixin Zhang, 2024. "Model averaging estimation for nonparametric varying-coefficient models with multiplicative heteroscedasticity," Statistical Papers, Springer, vol. 65(3), pages 1375-1409, May.
    4. Zhongqi Liang & Qihua Wang, 2023. "A robust model averaging approach for partially linear models with responses missing at random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1933-1952, December.
    5. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
    6. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    7. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    8. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    10. Xiaochao Xia & Sijin He & Naiwen Pang, 2025. "Communication-efficient model averaging prediction for massive data with asymptotic optimality," Statistical Papers, Springer, vol. 66(2), pages 1-45, February.
    11. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    13. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    14. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    15. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2025. "State-Varying Model Averaging Prediction," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202507, University of Kansas, Department of Economics.
    16. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    17. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    18. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
    19. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    20. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09620-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.