IDEAS home Printed from https://ideas.repec.org/r/taf/ecsysr/v23y2011i1p27-47.html
   My bibliography  Save this item

The Life Cycle Environmental Impacts Of Consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
  2. Daniel A. Salas & Paulina Criollo & Angel D. Ramirez, 2021. "The Role of Higher Education Institutions in the Implementation of Circular Economy in Latin America," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
  3. Zhu, Yuhan & Zheng, Yan & Ren, Zhiyuan, 2024. "Household welfare loss from energy price crisis: Evidence from China," Energy Economics, Elsevier, vol. 138(C).
  4. Juan C. Surís-Regueiro & José L. Santiago, 2016. "An Input-Output methodological proposal to quantifying socio economic impacts linked to supply shocks," Working Papers 1603, Universidade de Vigo, Departamento de Economía Aplicada.
  5. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
  6. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
  7. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
  8. Li, Xi & Ouyang, Zhigang & Zhang, Qiong & Shang, Wen-long & Huang, Liqiao & Wu, Yi & Gao, Yuning, 2022. "Evaluating food supply chain emissions from Japanese household consumption," Applied Energy, Elsevier, vol. 306(PB).
  9. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
  10. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
  11. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
  12. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
  13. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
  14. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
  15. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
  16. Tatiana Olegovna Tagaeva & Alexander Olegovich Baranov & Vadim Manavirovich Gilmundinov, 2016. "Assessment of the Required Changes of Russian Ecological Taxes," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 611-616.
  17. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
  18. Yauheniya Shershunovich & Alisher Mirzabaev, 2024. "Social cost of household emissions: cross-country comparison across the economic development spectrum," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15285-15305, June.
  19. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
  20. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
  21. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
  22. Paul G. Harris & Taedong Lee, 2017. "Compliance with climate change agreements: the constraints of consumption," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 17(6), pages 779-794, December.
  23. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
  24. Janet Salem & Manfred Lenzen & Yasuhiko Hotta, 2021. "Are We Missing the Opportunity of Low-Carbon Lifestyles? International Climate Policy Commitments and Demand-Side Gaps," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  25. Oshita, Yuko, 2012. "Identifying critical supply chain paths that drive changes in CO2 emissions," Energy Economics, Elsevier, vol. 34(4), pages 1041-1050.
  26. Surís-Regueiro, Juan C. & Santiago, Jose L., 2018. "Assessment of Socioeconomic Impacts Through Physical Multipliers: The Case of Fishing Activity in Galicia (Spain)," Ecological Economics, Elsevier, vol. 147(C), pages 276-297.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.