IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v88y2011i2d10.1007_s11192-011-0404-z.html
   My bibliography  Save this item

Mapping collaborative knowledge production in China using patent co-inventorships

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Eduardo Gonçalves & Henrique Silva Costa & Rosa Livia Montenegro & Tulio Chiarini & Juliana Gonçalves Taveira, 2023. "Green technology co-patenting networks: international dynamics," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1603-1627, April.
  2. Huang, Mu-Hsuan & Chang, Han-Wen & Chen, Dar-Zen, 2012. "The trend of concentration in scientific research and technological innovation: A reduction of the predominant role of the U.S. in world research & technology," Journal of Informetrics, Elsevier, vol. 6(4), pages 457-468.
  3. Csomós, György & Tóth, Géza, 2016. "Exploring the position of cities in global corporate research and development: A bibliometric analysis by two different geographical approaches," Journal of Informetrics, Elsevier, vol. 10(2), pages 516-532.
  4. Sun, Yutao & Grimes, Seamus, 2017. "The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 125-136.
  5. Valeria Aman, 2018. "A new bibliometric approach to measure knowledge transfer of internationally mobile scientists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 227-247, October.
  6. Sheng-qiang Jiang & An-na Shi & Zhi-hang Peng & Xin Li, 2017. "Major factors affecting cross-city R&D collaborations in China: evidence from cross-sectional co-patent data between 224 cities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1251-1266, June.
  7. Xie, Qijun & Su, Jun, 2021. "The spatial-temporal complexity and dynamics of research collaboration: Evidence from 297 cities in China (1985–2016)," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
  8. Kolja Hesse & Dirk Fornahl, 2020. "Essential ingredients for radical innovations? The role of (un‐)related variety and external linkages in Germany," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1165-1183, October.
  9. Lili Wang & Xianwen Wang & Niels J. Philipsen, 2017. "Network structure of scientific collaborations between China and the EU member states," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 765-781, November.
  10. Zou, Chen & Huang, Yongchun & Hu, Shiliang & Huang, Zhan, 2023. "Government participation in low-carbon technology transfer: An evolutionary game study," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
  11. Zuo-jun Dong & Lan Xu & Jia-hui Cheng & Guo-jun Sun, 2021. "Major factors affecting biomedical cross-city R&D collaborations based on cooperative patents in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1923-1943, March.
  12. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
  13. Yuandi Wang & Jian Li & Lutao Ning & Deming Zeng & Xin Gu, 2014. "Dynamic patterns of technology collaboration: a case study of the Chinese automobile industry, 1985–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 663-683, October.
  14. Bodas Freitas Isabel Maria & Federica Rossi & Aldo Geuna, 2014. "Collaboration objectives and the location of the university partner: Evidence from the Piedmont region in Italy," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 203-226, November.
  15. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
  16. Ebersberger, Bernd & Feit, Margarita & Mengis, Helen, 2023. "International knowledge interactions and catch-up. Evidence from European patent data for Chinese latecomer firms," International Business Review, Elsevier, vol. 32(2).
  17. Jungwon Yoon & Han Woo Park, 2017. "Triple helix dynamics of South Korea’s innovation system: a network analysis of inter-regional technological collaborations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 989-1007, May.
  18. Jiaming Jiang & Yu Zhao & Junshi Feng, 2022. "University–Industry Technology Transfer: Empirical Findings from Chinese Industrial Firms," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
  19. Xiao-Ping Lei & Zhi-Yun Zhao & Xu Zhang & Dar-Zen Chen & Mu-Hsuan Huang & Jia Zheng & Run-Sheng Liu & Jing Zhang & Yun-Hua Zhao, 2013. "Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 427-441, August.
  20. Yindan Ye & Kevin De Moortel & Thomas Crispeels, 2020. "Network dynamics of Chinese university knowledge transfer," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1228-1254, August.
  21. Shu-Hao Chang, 2017. "The evolutionary growth estimation model of international cooperative patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 711-729, August.
  22. Yuan, Xiaodong & Li, Xiaotao, 2021. "The evolution of the industrial value chain in China's high-speed rail driven by innovation policies: A patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  23. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
  24. Chenxi Liu & Zhenghong Peng & Lingbo Liu & Shixuan Li, 2023. "Innovation Networks of Science and Technology Firms: Evidence from China," Land, MDPI, vol. 12(7), pages 1-21, June.
  25. Robert K. Abercrombie & Akaninyene W. Udoeyop & Bob G. Schlicher, 2012. "A study of scientometric methods to identify emerging technologies via modeling of milestones," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 327-342, May.
  26. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
  27. Yuandi Wang & Xin Pan & Lutao Ning & Jian Li & Jin Chen, 2015. "Technology exchange patterns in China: an analysis of regional data," The Journal of Technology Transfer, Springer, vol. 40(2), pages 252-272, April.
  28. Xiao-Ping Lei & Zhi-Yun Zhao & Xu Zhang & Dar-Zen Chen & Mu-Hsuan Huang & Yun-Hua Zhao, 2012. "The inventive activities and collaboration pattern of university–industry–government in China based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(1), pages 231-251, January.
  29. Chengliang Liu & Caicheng Niu & Ji Han, 2019. "Spatial Dynamics of Intercity Technology Transfer Networks in China’s Three Urban Agglomerations: A Patent Transaction Perspective," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
  30. Shan Jiang & Hsinchun Chen, 2019. "Examining patterns of scientific knowledge diffusion based on knowledge cyber infrastructure: a multi-dimensional network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1599-1617, December.
  31. Wei Yang & Xiang Yu & Dian Wang & Jinrui Yang & Ben Zhang, 2021. "Spatio-temporal evolution of technology flows in China: patent licensing networks 2000–2017," The Journal of Technology Transfer, Springer, vol. 46(5), pages 1674-1703, October.
  32. Csomós György, 2017. "Mapping Spatial and Temporal Changes of Global Corporate Research and Development Activities by Conducting a Bibliometric Analysis," Quaestiones Geographicae, Sciendo, vol. 36(1), pages 65-77, March.
  33. Wang, Yunmin & Cao, Guohua & Yan, Youliang & Wang, Jingjing, 2022. "Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China," Transport Policy, Elsevier, vol. 116(C), pages 119-131.
  34. Gupeng Zhang & Jiancheng Guan & Xielin Liu, 2014. "The impact of small world on patent productivity in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 945-960, February.
  35. Juhyun Lee & Sangsung Park & Junseok Lee, 2023. "Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
  36. Chongfeng Wang & Gupeng Zhang, 2019. "Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 561-593, May.
  37. Inácio Fernandes de Araújo & Eduardo Gonçalves & Juliana Gonçalves Taveira, 2019. "The Role of Patent Co-inventorship Networks in Regional Inventive Performance," International Regional Science Review, , vol. 42(3-4), pages 235-280, May.
  38. Sun, Yutao, 2016. "The structure and dynamics of intra- and inter-regional research collaborative networks: The case of China (1985–2008)," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 70-82.
  39. Pinto, Pablo E. & Vallone, Andres & Honores, Guillermo, 2019. "The structure of collaboration networks: Findings from three decades of co-invention patents in Chile," Journal of Informetrics, Elsevier, vol. 13(4).
  40. Yutao Sun & Kai Liu, 2016. "Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 201-220, July.
  41. Alex Fabianne de Paulo & Evandro Marcos Saidel Ribeiro & Geciane Silveira Porto, 2018. "Mapping countries cooperation networks in photovoltaic technology development based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 667-686, November.
  42. Jungwon Yoon, 2015. "The evolution of South Korea’s innovation system: moving towards the triple helix model?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 265-293, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.