My bibliography
Save this item
Using machine learning to detect misstatements
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
- Liu, Wanli, 2024. "Digital transformation and earnings opacity:Evidence from China," Finance Research Letters, Elsevier, vol. 69(PA).
- Geoffrey M. Ngene & Jinghua Wang, 2024. "Transitory and permanent shock transmissions between real estate investment trusts and other assets: Evidence from time‐frequency decomposition and machine learning," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 539-573, March.
- Miao Liu, 2022. "Assessing Human Information Processing in Lending Decisions: A Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 607-651, May.
- Ruijie Sun & Feng Liu & Yinan Li & Rongping Wang & Jing Luo, 2024. "Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?," Journal of Business Ethics, Springer, vol. 195(1), pages 151-166, November.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Luigi Rombi, 2024. "Handbook of accounting, accountability and governance edited by Garry D. Carnegie and Christopher J. Napier," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 28(3), pages 943-955, September.
- Downen, Tom & Kim, Sarah & Lee, Lorraine, 2024. "Algorithm aversion, emotions, and investor reaction: Does disclosing the use of AI influence investment decisions?," International Journal of Accounting Information Systems, Elsevier, vol. 52(C).
- Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
- Zhou, Ying & Xiao, Zhi & Gao, Ruize & Wang, Chang, 2024. "Using data-driven methods to detect financial statement fraud in the real scenario," International Journal of Accounting Information Systems, Elsevier, vol. 54(C).
- Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
- Essi Nousiainen & Mikko Ranta & Mika Ylinen & Marko Järvenpää, 2024. "Using machine learning and 10‐K filings to measure innovation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(4), pages 3211-3239, December.
- Moritz Schneider & Rolf Brühl, 2023. "Disentangling the black box around CEO and financial information-based accounting fraud detection: machine learning-based evidence from publicly listed U.S. firms," Journal of Business Economics, Springer, vol. 93(9), pages 1591-1628, November.
- Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
- Zhou, Jinwei & Luo, Qi, 2024. "Influence factor studies based on ensemble learning on the innovation performance of technology mergers and acquisitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 67-89.
- Kelton, Andrea Seaton & Murthy, Uday S., 2023. "Reimagining design science and behavioral science AIS research through a business activity lens," International Journal of Accounting Information Systems, Elsevier, vol. 50(C).
- Sun, Guanglin & Yin, Ding & Kong, Tao & Yin, Lei, 2024. "The impact of the integration of the digital economy and the real economy on the risk of stock price collapse," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
- Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
- Slavko ?odan, 0000. "Can Accrual-based Metrics Indicate Material Accounting Misstatements? Evidence on Audit Adjustments," Proceedings of Economics and Finance Conferences 14416287, International Institute of Social and Economic Sciences.
- Xi Chen & Yang Ha (Tony) Cho & Yiwei Dou & Baruch Lev, 2022. "Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 467-515, May.
- Murphy, Brid & Feeney, Orla & Rosati, Pierangelo & Lynn, Theo, 2024. "Exploring accounting and AI using topic modelling," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
- Cebi, Selcuk & Karakurt, Necip Fazıl & Kurtulus, Erkan & Tokgoz, Bunyamin, 2024. "Development of a decision support system for client acceptance in independent audit process," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
- Autore, Donald & Chen, Huimin (Amy) & Clarke, Nicholas & Lin, Jingrong, 2024. "Blockchain and earnings management: Evidence from the supply chain," The British Accounting Review, Elsevier, vol. 56(4).
- Tao Meng & Tiankai Zhang & Mengyuan Chen & Jiang Cao, 2024. "Factors influencing enterprise organizational resilience: Evidence based on machine learning," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(2), pages 578-589, March.