IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v45y1997i3p378-394.html
   My bibliography  Save this item

A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Martinelli, Rafael & Pecin, Diego & Poggi, Marcus, 2014. "Efficient elementary and restricted non-elementary route pricing," European Journal of Operational Research, Elsevier, vol. 239(1), pages 102-111.
  2. F. Carrabs & R. Cerulli & R. Pentangelo & A. Raiconi, 2018. "A two-level metaheuristic for the all colors shortest path problem," Computational Optimization and Applications, Springer, vol. 71(2), pages 525-551, November.
  3. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
  4. HILL, Alessandro & VOß, Stefan, 2014. "Optimal capacitated ring trees," Working Papers 2014012, University of Antwerp, Faculty of Business and Economics.
  5. Gianpaolo Ghiani & Gilbert Laporte & Frédéric Semet, 2006. "The Black and White Traveling Salesman Problem," Operations Research, INFORMS, vol. 54(2), pages 366-378, April.
  6. Beraldi, Patrizia & Bruni, Maria Elena & Laganà, Demetrio & Musmanno, Roberto, 2015. "The mixed capacitated general routing problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(2), pages 382-392.
  7. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
  8. Markus Leitner, 2016. "Integer programming models and branch-and-cut approaches to generalized {0,1,2}-survivable network design problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 73-92, September.
  9. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
  10. Timo Hintsch & Stefan Irnich, 2018. "Exact Solution of the Soft-Clustered Vehicle Routing Problem," Working Papers 1813, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  11. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
  12. Yuan Yuan & Diego Cattaruzza & Maxime Ogier & Cyriaque Rousselot & Frédéric Semet, 2021. "Mixed integer programming formulations for the generalized traveling salesman problem with time windows," 4OR, Springer, vol. 19(4), pages 571-592, December.
  13. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
  14. Gilbert Laporte & Jorge Riera-Ledesma & Juan-José Salazar-González, 2003. "A Branch-and-Cut Algorithm for the Undirected Traveling Purchaser Problem," Operations Research, INFORMS, vol. 51(6), pages 940-951, December.
  15. Asef-Vaziri, Ardavan & Kazemi, Morteza, 2018. "Covering and connectivity constraints in loop-based formulation of material flow network design in facility layout," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1033-1044.
  16. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
  17. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
  18. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
  19. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  20. Khachai, Daniil & Sadykov, Ruslan & Battaia, Olga & Khachay, Michael, 2023. "Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 309(2), pages 488-505.
  21. Álvarez-Miranda, Eduardo & Luipersbeck, Martin & Sinnl, Markus, 2018. "Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 779-794.
  22. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
  23. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
  24. Salazar-González, Juan-José & Santos-Hernández, Beatriz, 2015. "The split-demand one-commodity pickup-and-delivery travelling salesman problem," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 58-73.
  25. Hernández-Pérez, Hipólito & Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José, 2016. "A hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 44-52.
  26. Paolo Gianessi & Laurent Alfandari & Lucas Létocart & Roberto Wolfler Calvo, 2016. "The Multicommodity-Ring Location Routing Problem," Transportation Science, INFORMS, vol. 50(2), pages 541-558, May.
  27. Buckow, Jan-Niklas & Knust, Sigrid, 2023. "The warehouse reshuffling problem with swap moves," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
  28. Bruce Golden & S. Raghavan & Daliborka Stanojević, 2005. "Heuristic Search for the Generalized Minimum Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 290-304, August.
  29. Duchenne, Éric & Laporte, Gilbert & Semet, Frédéric, 2012. "The undirected m-Capacitated Peripatetic Salesman Problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 637-643.
  30. Archetti, Claudia & Carrabs, Francesco & Cerulli, Raffaele, 2018. "The Set Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 267(1), pages 264-272.
  31. Benjamin Biesinger & Bin Hu & Günther R. Raidl, 2018. "A Genetic Algorithm in Combination with a Solution Archive for Solving the Generalized Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 52(3), pages 673-690, June.
  32. Andrea Lodi & Enrico Malaguti & Nicolás E. Stier-Moses & Tommaso Bonino, 2016. "Design and Control of Public-Service Contracts and an Application to Public Transportation Systems," Management Science, INFORMS, vol. 62(4), pages 1165-1187, April.
  33. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
  34. Snyder, Lawrence V. & Daskin, Mark S., 2006. "A random-key genetic algorithm for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 174(1), pages 38-53, October.
  35. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
  36. Francesco Carrabs & Raffaele Cerulli & Ciriaco D’Ambrosio & Federica Laureana, 2021. "The Generalized Minimum Branch Vertices Problem: Properties and Polyhedral Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 356-377, February.
  37. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  38. Kaarthik Sundar & Sivakumar Rathinam, 2017. "Multiple depot ring star problem: a polyhedral study and an exact algorithm," Journal of Global Optimization, Springer, vol. 67(3), pages 527-551, March.
  39. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
  40. Bektaş, Tolga & Gouveia, Luís & Santos, Daniel, 2019. "Revisiting the Hamiltonian p-median problem: A new formulation on directed graphs and a branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 276(1), pages 40-64.
  41. Timo Hintsch & Stefan Irnich, 2017. "Large Multiple Neighborhood Search for the Clustered Vehicle-Routing Problem," Working Papers 1701, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  42. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
  43. Herminia I. Calvete & Carmen Galé & José A. Iranzo, 2022. "Approaching the Pareto Front in a Biobjective Bus Route Design Problem Dealing with Routing Cost and Individuals’ Walking Distance by Using a Novel Evolutionary Algorithm," Mathematics, MDPI, vol. 10(9), pages 1-17, April.
  44. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  45. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
  46. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
  47. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  48. Tolga Bektaş & Güneş Erdoğan & Stefan Røpke, 2011. "Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 299-316, August.
  49. Archetti, C. & Carrabs, F. & Cerulli, R. & Laureana, F., 2024. "A new formulation and a branch-and-cut algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 446-465.
  50. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
  51. Katrin Heßler & Stefan Irnich, 2020. "A Branch-and-Cut Algorithm for the Soft-Clustered Vehicle-Routing Problem," Working Papers 2001, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  52. Eduardo Álvarez-Miranda & Markus Sinnl, 2020. "A branch-and-cut algorithm for the maximum covering cycle problem," Annals of Operations Research, Springer, vol. 284(2), pages 487-499, January.
  53. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
  54. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
  55. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
  56. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
  57. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
  58. Pop, Petrica C. & Kern, W. & Still, G., 2006. "A new relaxation method for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 170(3), pages 900-908, May.
  59. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
  60. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "The order picking problem under a scattered storage policy," Research Memorandum 006, Maastricht University, Graduate School of Business and Economics (GSBE).
  61. Kang, Seungmo & Ouyang, Yanfeng, 2011. "The traveling purchaser problem with stochastic prices: Exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 209(3), pages 265-272, March.
  62. Pěnička, Robert & Faigl, Jan & Saska, Martin, 2019. "Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants," European Journal of Operational Research, Elsevier, vol. 276(3), pages 816-825.
  63. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
  64. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
  65. Mehdi El Krari & Belaïd Ahiod & Youssef Bouazza El Benani, 2021. "A pre-processing reduction method for the generalized travelling salesman problem," Operational Research, Springer, vol. 21(4), pages 2543-2591, December.
  66. Gorka Kobeaga & María Merino & Jose A. Lozano, 2021. "On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms," Annals of Operations Research, Springer, vol. 305(1), pages 107-136, October.
  67. Jorge Riera-Ledesma & Juan-José Salazar-González, 2006. "Solving the asymmetric traveling purchaser problem," Annals of Operations Research, Springer, vol. 144(1), pages 83-97, April.
  68. Karapetyan, D. & Gutin, G., 2012. "Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 234-251.
  69. Behnam Behdani & J. Cole Smith, 2014. "An Integer-Programming-Based Approach to the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 415-432, August.
  70. Öncan, Temel & Cordeau, Jean-François & Laporte, Gilbert, 2008. "A tabu search heuristic for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 306-319, December.
  71. Alessandro Hill & Stefan Voß, 2016. "Optimal capacitated ring trees," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(2), pages 137-166, May.
  72. Vicky Mak & Tommy Thomadsen, 2006. "Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem," Journal of Combinatorial Optimization, Springer, vol. 11(4), pages 421-434, June.
  73. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
  74. Baniasadi, Pouya & Foumani, Mehdi & Smith-Miles, Kate & Ejov, Vladimir, 2020. "A transformation technique for the clustered generalized traveling salesman problem with applications to logistics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 444-457.
  75. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
  76. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric, 2020. "A branch-and-cut algorithm for the generalized traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 286(3), pages 849-866.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.