IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i3d10.1007_s10898-016-0431-7.html
   My bibliography  Save this article

Multiple depot ring star problem: a polyhedral study and an exact algorithm

Author

Listed:
  • Kaarthik Sundar

    (Texas A&M University)

  • Sivakumar Rathinam

    (Texas A&M University)

Abstract

The multiple depot ring-star problem (MDRSP) is an important combinatorial optimization problem that arises in optical fiber network design and in applications that collect data using stationary sensing devices and autonomous vehicles. Given the locations of a set of customers and a set of depots, the goal is to (i) find a set of simple cycles such that each cycle (ring) passes through a subset of customers and exactly one depot, (ii) assign each non-visited customer to a visited customer or a depot, and (iii) minimize the sum of the routing costs, i.e., the cost of the cycles and the assignment costs. We present a mixed integer linear programming formulation for the MDRSP and propose valid inequalities to strengthen the linear programming relaxation. Furthermore, we present a polyhedral analysis and derive facet-inducing results for the MDRSP. All these results are then used to develop a branch-and-cut algorithm to obtain optimal solutions to the MDRSP. The performance of the branch-and-cut algorithm is evaluated through extensive computational experiments on several classes of test instances.

Suggested Citation

  • Kaarthik Sundar & Sivakumar Rathinam, 2017. "Multiple depot ring star problem: a polyhedral study and an exact algorithm," Journal of Global Optimization, Springer, vol. 67(3), pages 527-551, March.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:3:d:10.1007_s10898-016-0431-7
    DOI: 10.1007/s10898-016-0431-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0431-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0431-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreno Perez, Jose A. & Marcos Moreno-Vega, J. & Rodriguez Martin, Inmaculada, 2003. "Variable neighborhood tabu search and its application to the median cycle problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 365-378, December.
    2. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    3. Enrique Benavent & Antonio Martínez, 2013. "Multi-depot Multiple TSP: a polyhedral study and computational results," Annals of Operations Research, Springer, vol. 207(1), pages 7-25, August.
    4. Baldacci, R. & Dell'Amico, M., 2010. "Heuristic algorithms for the multi-depot ring-star problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 270-281, May.
    5. Ahmed Hadjar & Odile Marcotte & François Soumis, 2006. "A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 54(1), pages 130-149, February.
    6. HILL, Alessandro & VOß, Stefan, 2014. "An equi-model matheuristic for the multi-depot ring star problem," Working Papers 2014015, University of Antwerp, Faculty of Business and Economics.
    7. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    8. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    2. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    3. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
    4. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    5. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
    6. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    7. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    8. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 2021. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 499-523, October.
    9. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2016. "MEALS: A multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem," European Journal of Operational Research, Elsevier, vol. 250(2), pages 377-388.
    10. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    11. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    12. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    13. Bektaş, Tolga & Gouveia, Luís & Santos, Daniel, 2019. "Revisiting the Hamiltonian p-median problem: A new formulation on directed graphs and a branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 276(1), pages 40-64.
    14. Karapetyan, D. & Gutin, G., 2012. "Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 234-251.
    15. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    17. Baniasadi, Pouya & Foumani, Mehdi & Smith-Miles, Kate & Ejov, Vladimir, 2020. "A transformation technique for the clustered generalized traveling salesman problem with applications to logistics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 444-457.
    18. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    19. Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
    20. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:3:d:10.1007_s10898-016-0431-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.