IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v25y1977i1p62-69.html
   My bibliography  Save this item

Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mosheiov, Gur & Oron, Daniel, 2007. "Minmax scheduling with job-classes and earliness-tardiness costs," European Journal of Operational Research, Elsevier, vol. 177(1), pages 612-622, February.
  2. Michael C. Ferris & Milan Vlach, 1992. "Scheduling with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 229-245, March.
  3. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
  4. Soroush, H. M., 1999. "Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 113(2), pages 450-468, March.
  5. G A Álvarez-Pérez & J L González-Velarde & J W Fowler, 2009. "Crossdocking— Just in Time scheduling: an alternative solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 554-564, April.
  6. Lemos, R.F. & Ronconi, D.P., 2015. "Heuristics for the stochastic single-machine problem with E/T costs," International Journal of Production Economics, Elsevier, vol. 168(C), pages 131-142.
  7. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
  8. Joseph Y.‐T. Leung, 2002. "A dual criteria sequencing problem with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(4), pages 422-431, June.
  9. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
  10. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
  11. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
  12. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
  13. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
  14. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
  15. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
  16. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
  17. Chung‐Lun Li & T. C. E. Cheng, 1994. "The parallel machine min‐max weighted absolute lateness scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 33-46, February.
  18. Awi Federgruen & Gur Mosheiov, 1997. "Heuristics for multimachine minmax scheduling problems with general earliness and tardiness costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 287-299, April.
  19. Ventura, Jose A. & Radhakrishnan, Sanjay, 2003. "Single machine scheduling with symmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 144(3), pages 598-612, February.
  20. Valente, Jorge M.S. & Alves, Rui A.F.S., 2007. "Heuristics for the early/tardy scheduling problem with release dates," International Journal of Production Economics, Elsevier, vol. 106(1), pages 261-274, March.
  21. N. V. R. Mahadev & Aleksandar Pekeč & Fred S. Roberts, 1998. "On the Meaningfulness of Optimal Solutions to Scheduling Problems: Can an Optimal Solution be Nonoptimal?," Operations Research, INFORMS, vol. 46(3-supplem), pages 120-134, June.
  22. G Mosheiov, 2003. "Scheduling unit processing time jobs on an m-machine flow-shop," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 437-441, April.
  23. Lu, Haimin & Pei, Zhi, 2023. "Single machine scheduling with release dates: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 308(1), pages 19-37.
  24. Yang, Dar-Li & Lai, Chien-Jung & Yang, Suh-Jenq, 2014. "Scheduling problems with multiple due windows assignment and controllable processing times on a single machine," International Journal of Production Economics, Elsevier, vol. 150(C), pages 96-103.
  25. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
  26. Yeong‐Dae Kim & Candace Arai Yano, 1994. "Minimizing mean tardiness and earliness in single‐machine scheduling problems with unequal due dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 913-933, December.
  27. Li, Lei & Fonseca, Daniel J. & Chen, Der-San, 2006. "Earliness-tardiness production planning for just-in-time manufacturing: A unifying approach by goal programming," European Journal of Operational Research, Elsevier, vol. 175(1), pages 508-515, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.