IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v17y1969i6p941-957.html
   My bibliography  Save this item

Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
  2. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
  3. Sándor Szabó, 2021. "A Clique Search Problem and its Application to Machine Scheduling," SN Operations Research Forum, Springer, vol. 2(4), pages 1-12, December.
  4. Kolisch, Rainer & Padman, Rema, 1997. "An integrated survey of project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 463, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  5. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
  6. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
  7. Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
  8. Leonardo Lamorgese & Carlo Mannino, 2019. "A Noncompact Formulation for Job-Shop Scheduling Problems in Traffic Management," Operations Research, INFORMS, vol. 67(6), pages 1586-1609, November.
  9. Vitoriano, B. & Ortuno, M. T. & Recio, B. & Rubio, F. & Alonso-Ayuso, A., 2003. "Two alternative models for farm management: Discrete versus continuous time horizon," European Journal of Operational Research, Elsevier, vol. 144(3), pages 613-628, February.
  10. Steinhofel, K. & Albrecht, A. & Wong, C. K., 1999. "Two simulated annealing-based heuristics for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 118(3), pages 524-548, November.
  11. Sprecher, Arno & Kolisch, Rainer & Drexl, Andreas, 1995. "Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 94-102, January.
  12. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
  13. Michael Pinedo & Marcos Singer, 1999. "A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 1-17, February.
  14. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
  15. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
  16. Amaral Armentano, Vinicius & Rigao Scrich, Cintia, 2000. "Tabu search for minimizing total tardiness in a job shop," International Journal of Production Economics, Elsevier, vol. 63(2), pages 131-140, January.
  17. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "A tabu search approach to machine scheduling," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 277-300, April.
  18. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
  19. Jonas Harbering & Abhiram Ranade & Marie Schmidt & Oliver Sinnen, 2019. "Complexity, bounds and dynamic programming algorithms for single track train scheduling," Annals of Operations Research, Springer, vol. 273(1), pages 479-500, February.
  20. Yuri N. Sotskov & Omid Gholami, 2017. "Mixed graph model and algorithms for parallel-machine job-shop scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1549-1564, March.
  21. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
  22. Yanwei Sang & Jianping Tan, 2022. "Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration," Energies, MDPI, vol. 15(5), pages 1-17, March.
  23. Leutwiler, Florin & Corman, Francesco, 2022. "A logic-based Benders decomposition for microscopic railway timetable planning," European Journal of Operational Research, Elsevier, vol. 303(2), pages 525-540.
  24. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
  25. Pierre Hansen & Julio Kuplinsky & Dominique Werra, 1997. "Mixed graph colorings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(1), pages 145-160, February.
  26. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
  27. Braune, R. & Zäpfel, G. & Affenzeller, M., 2012. "An exact approach for single machine subproblems in shifting bottleneck procedures for job shops with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 218(1), pages 76-85.
  28. Frank Benda & Roland Braune & Karl F. Doerner & Richard F. Hartl, 2019. "A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 871-893, December.
  29. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
  30. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
  31. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
  32. Chong Peng & Guanglin Wu & T Warren Liao & Hedong Wang, 2019. "Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
  33. Yuri N. Sotskov, 2020. "Mixed Graph Colorings: A Historical Review," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
  34. Abdelmaguid, Tamer F., 2015. "A neighborhood search function for flexible job shop scheduling with separable sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 188-203.
  35. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
  36. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
  37. Hoksung Yau & Leyuan Shi, 2009. "Nested partitions for the large-scale extended job shop scheduling problem," Annals of Operations Research, Springer, vol. 168(1), pages 23-39, April.
  38. Sprecher, Arno & Kolisch, Rainer & Drexl, Andreas, 1993. "Semi-active, active and non-delay schedules for the resource-constrained project scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 307, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.