IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1884-d763603.html
   My bibliography  Save this article

Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration

Author

Listed:
  • Yanwei Sang

    (State Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China)

  • Jianping Tan

    (State Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China)

Abstract

With the increasingly customized product requirements of customers, the manufactured products have the characteristics of multi-variety and small-batch production. A high-quality production scheduling scheme can reduce energy consumption, improve production capacity and processing quality of the enterprise. The high-dimensional many-objective green flexible job shop scheduling problem (Ma-OFJSSP) urgently needs to be solved. However, the existing optimization method are difficult to effectively optimize the Ma-OFJSSP. This study proposes a many-objective flexible job shop scheduling model. An optimization method SV-MA is designed to effectively optimize the Ma-OFJSSP model. The SV-MA memetic algorithm combines an improved strength Pareto evolution method (SPEA2) and the variable neighborhood search method. To effectively distinguish the better solutions and increase the selection pressure of the non-dominated solutions, the fitness calculation method based on the shift-based density estimation strategy is adopted. The SV-MA algorithm designs the variable neighborhood strategy which combines with scheduling knowledge. Finally, in the workshop scheduling benchmarks and the machining workshop engineering case, the feasibility and effectiveness of the proposed model and SV-MA algorithm are verified by comparison with other methods. The production scheduling scheme obtained by the proposed model and SV-MA optimization algorithm can improve production efficiency and reduce energy consumption in the production process.

Suggested Citation

  • Yanwei Sang & Jianping Tan, 2022. "Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration," Energies, MDPI, vol. 15(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1884-:d:763603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiuli Wu & Junjian Peng & Xiao Xiao & Shaomin Wu, 2021. "An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 707-728, March.
    2. Xiaoguang He & Cai Dai & Zehua Chen, 2014. "Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, August.
    3. Egon Balas, 1969. "Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm," Operations Research, INFORMS, vol. 17(6), pages 941-957, December.
    4. Vandana & S. R. Singh & Dharmendra Yadav & Biswajit Sarkar & Mitali Sarkar, 2021. "Impact of Energy and Carbon Emission of a Supply Chain Management with Two-Level Trade-Credit Policy," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    3. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    4. Pierre Hansen & Julio Kuplinsky & Dominique Werra, 1997. "Mixed graph colorings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(1), pages 145-160, February.
    5. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    6. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    7. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    8. Tanveen Kaur Bhatia & Amit Kumar & Srimantoorao S. Appadoo & Yuvraj Gajpal & Mahesh Kumar Sharma, 2021. "Mehar Approach for Finding Shortest Path in Supply Chain Network," Sustainability, MDPI, vol. 13(7), pages 1-14, April.
    9. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    10. Elena Drobot & Ivan Makarov & Yelena Petrenko & Gaukhar Koshebayeva, 2022. "Relationship between Countries’ Energy Indicators and the Indices of GVC Participation: The Case of APEC Member Economies," Energies, MDPI, vol. 15(5), pages 1-22, February.
    11. Michael Pinedo & Marcos Singer, 1999. "A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 1-17, February.
    12. Álvaro Manso-Burgos & David Ribó-Pérez & Manuel Alcázar-Ortega & Tomás Gómez-Navarro, 2021. "Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    13. Braune, R. & Zäpfel, G. & Affenzeller, M., 2012. "An exact approach for single machine subproblems in shifting bottleneck procedures for job shops with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 218(1), pages 76-85.
    14. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    15. Leonardo Lamorgese & Carlo Mannino, 2019. "A Noncompact Formulation for Job-Shop Scheduling Problems in Traffic Management," Operations Research, INFORMS, vol. 67(6), pages 1586-1609, November.
    16. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    17. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    18. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    19. Sprecher, Arno & Kolisch, Rainer & Drexl, Andreas, 1993. "Semi-active, active and non-delay schedules for the resource-constrained project scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 307, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Abdelmonem M. Ibrahim & Mohamed A. Tawhid, 2023. "An improved artificial algae algorithm integrated with differential evolution for job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1763-1778, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1884-:d:763603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.