IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v23y1977i6p567-575.html
   My bibliography  Save this item

Minimising Waiting Time Variance in the Single Machine Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. V. Rajendra Prasad & D. K. Manna, 1997. "Minimization of expected variance of completion times on single machine for stochastic jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 97-108, February.
  2. Manna, D. K. & Prasad, V. Rajendra, 1999. "Bounds for the position of the smallest job in completion time variance minimization," European Journal of Operational Research, Elsevier, vol. 114(2), pages 411-419, April.
  3. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
  4. Soroush, H. M., 1999. "Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 113(2), pages 450-468, March.
  5. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
  6. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
  7. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
  8. Y. P. Aneja & S. N. Kabadi & A. Nagar, 1998. "Minimizing weighted mean absolute deviation of flow times in single machine systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 297-311, April.
  9. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
  10. Gowrishankar, K. & Rajendran, Chandrasekharan & Srinivasan, G., 2001. "Flow shop scheduling algorithms for minimizing the completion time variance and the sum of squares of completion time deviations from a common due date," European Journal of Operational Research, Elsevier, vol. 132(3), pages 643-665, August.
  11. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
  12. Gur Mosheiov, 2000. "Minimizing mean absolute deviation of job completion times from the mean completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 657-668, December.
  13. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
  14. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
  15. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
  16. Hayriye Ayhan & Tava Lennon Olsen, 2000. "Scheduling of Multi-Class Single-Server Queues Under Nontraditional Performance Measures," Operations Research, INFORMS, vol. 48(3), pages 482-489, June.
  17. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
  18. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
  19. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
  20. Nasini, Stefano & Nessah, Rabia, 2021. "An almost exact solution to the min completion time variance in a single machine," European Journal of Operational Research, Elsevier, vol. 294(2), pages 427-441.
  21. Barış Ata & Tava Lennon Olsen, 2009. "Near-Optimal Dynamic Lead-Time Quotation and Scheduling Under Convex-Concave Customer Delay Costs," Operations Research, INFORMS, vol. 57(3), pages 753-768, June.
  22. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
  23. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
  24. G Mosheiov, 2008. "Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1422-1424, October.
  25. Nasini, Stefano & Nessah, Rabia, 2024. "Time-flexible min completion time variance in a single machine by quadratic programming," European Journal of Operational Research, Elsevier, vol. 312(2), pages 427-444.
  26. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
  27. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
  28. C.T. Ng & X. Cai & T.C.E. Cheng, 1999. "Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 373-398, June.
  29. Gerhard J. Woeginger, 1999. "An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 211-216, May.
  30. Weng, Xiaohua & Ventura, Jose A., 1996. "Scheduling about a given common due date to minimize mean squared deviation of completion times," European Journal of Operational Research, Elsevier, vol. 88(2), pages 328-335, January.
  31. Mittenthal, John & Raghavachari, M. & Rana, Arif I., 1995. "V- and GG-shaped properties for optimal single machine schedules for a class of non-separable penalty functions," European Journal of Operational Research, Elsevier, vol. 86(2), pages 262-269, October.
  32. Seo, Jong Hwa & Kim, Chae-Bogk & Lee, Dong Hoon, 2001. "Minimizing mean squared deviation of completion times with maximum tardiness constraint," European Journal of Operational Research, Elsevier, vol. 129(1), pages 95-104, February.
  33. X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.