IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v19y1973i5p544-546.html
   My bibliography  Save this item

Optimal Sequencing of a Single Machine Subject to Precedence Constraints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Christian L. Cesar & Peter G. Jessel, 1992. "Real‐time task scheduling with overheads considered," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 247-264, March.
  2. Dávid Szeszlér, 2022. "Sufficient conditions for the optimality of the greedy algorithm in greedoids," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 287-302, August.
  3. Zhichao Geng & Jiayu Liu, 2020. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 774-795, October.
  4. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
  5. Janiak, Adam & Kovalyov, Mikhail Y., 2006. "Scheduling in a contaminated area: A model and polynomial algorithms," European Journal of Operational Research, Elsevier, vol. 173(1), pages 125-132, August.
  6. Olivier Ploton & Vincent T’kindt, 2022. "Exponential-time algorithms for parallel machine scheduling problems," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3405-3418, December.
  7. Stanisław Gawiejnowicz & Alexander Kononov, 2014. "Isomorphic scheduling problems," Annals of Operations Research, Springer, vol. 213(1), pages 131-145, February.
  8. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
  9. Hongye Zheng & Suogang Gao & Wen Liu & Weili Wu & Ding-Zhu Du & Bo Hou, 2022. "Approximation algorithm for the parallel-machine scheduling problem with release dates and submodular rejection penalties," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 343-353, August.
  10. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
  11. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
  12. Alcaide, David & Rodriguez-Gonzalez, Andrés & Sicilia, Joaquín, 2003. "An approach to solve a hierarchical stochastic sequential ordering problem," Omega, Elsevier, vol. 31(3), pages 169-187, June.
  13. Wu, Xianyi & Zhou, Xian, 2008. "Stochastic scheduling to minimize expected maximum lateness," European Journal of Operational Research, Elsevier, vol. 190(1), pages 103-115, October.
  14. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
  15. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
  16. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
  17. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
  18. Lushchakova, Irene N., 2000. "Minimizing functions of infeasibilities in a two-machine flow shop," European Journal of Operational Research, Elsevier, vol. 121(2), pages 380-393, March.
  19. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
  20. A.A. Gladky & Y.M. Shafransky & V.A. Strusevich, 2004. "Flow Shop Scheduling Problems Under Machine–Dependent Precedence Constraints," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 13-28, March.
  21. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
  22. Shabtay, Dvir, 2016. "Optimal restricted due date assignment in scheduling," European Journal of Operational Research, Elsevier, vol. 252(1), pages 79-89.
  23. Liaee, Mohammad Mehdi & Emmons, Hamilton, 1997. "Scheduling families of jobs with setup times," International Journal of Production Economics, Elsevier, vol. 51(3), pages 165-176, September.
  24. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
  25. Chung‐Lun Li & T. C. E. Cheng, 1994. "The parallel machine min‐max weighted absolute lateness scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 33-46, February.
  26. Kovalyov, Mikhail Y. & Pesch, Erwin, 2014. "A game mechanism for single machine sequencing with zero risk," Omega, Elsevier, vol. 44(C), pages 104-110.
  27. Arbib, Claudio & Felici, Giovanni & Servilio, Mara, 2019. "Common operation scheduling with general processing times: A branch-and-cut algorithm to minimize the weighted number of tardy jobs," Omega, Elsevier, vol. 84(C), pages 18-30.
  28. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
  29. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
  30. Ramachandra, Girish & Elmaghraby, Salah E., 2006. "Sequencing precedence-related jobs on two machines to minimize the weighted completion time," International Journal of Production Economics, Elsevier, vol. 100(1), pages 44-58, March.
  31. Lingfa Lu & Liqi Zhang, 2017. "Online Single Machine Scheduling to Minimize the Maximum Starting Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-9, October.
  32. Fridman, Ilia & Pesch, Erwin & Shafransky, Yakov, 2020. "Minimizing maximum cost for a single machine under uncertainty of processing times," European Journal of Operational Research, Elsevier, vol. 286(2), pages 444-457.
  33. Gur Mosheiov & Daniel Oron, 2020. "Scheduling problems with a weight-modifying-activity," Annals of Operations Research, Springer, vol. 295(2), pages 737-745, December.
  34. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
  35. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
  36. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
  37. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
  38. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.
  39. Simon Emde & Shohre Zehtabian & Yann Disser, 2023. "Point-to-point and milk run delivery scheduling: models, complexity results, and algorithms based on Benders decomposition," Annals of Operations Research, Springer, vol. 322(1), pages 467-496, March.
  40. Leung, Joseph Y.-T. & Li, Haibing & Pinedo, Michael, 2006. "Scheduling orders for multiple product types with due date related objectives," European Journal of Operational Research, Elsevier, vol. 168(2), pages 370-389, January.
  41. Péter Györgyi & Tamás Kis, 2015. "Approximability of scheduling problems with resource consuming jobs," Annals of Operations Research, Springer, vol. 235(1), pages 319-336, December.
  42. Nadia Brauner & Gerd Finke & Yakov Shafransky, 2017. "Lawler’s minmax cost problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 31-46, July.
  43. Malapert, Arnaud & Guéret, Christelle & Rousseau, Louis-Martin, 2012. "A constraint programming approach for a batch processing problem with non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 533-545.
  44. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
  45. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
  46. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
  47. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
  48. Zhang, Liqi & Lu, Lingfa & Yuan, Jinjiang, 2009. "Single machine scheduling with release dates and rejection," European Journal of Operational Research, Elsevier, vol. 198(3), pages 975-978, November.
  49. Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
  50. She, Bingling & Chen, Bo & Hall, Nicholas G., 2021. "Buffer sizing in critical chain project management by network decomposition," Omega, Elsevier, vol. 102(C).
  51. Xiaofei Liu & Man Xiao & Weidong Li & Yaoyu Zhu & Lei Ma, 2023. "Algorithms for single machine scheduling problem with release dates and submodular penalties," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-18, May.
  52. Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
  53. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
  54. Zvi Drezner & Alfonsas Misevičius & Gintaras Palubeckis, 2015. "Exact algorithms for the solution of the grey pattern quadratic assignment problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 85-105, August.
  55. Xiaofei Liu & Weidong Li, 2020. "Approximation Algorithm for the Single Machine Scheduling Problem with Release Dates and Submodular Rejection Penalty," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
  56. Cheng, T. C. E. & Ng, C. T. & Yuan, J. J. & Liu, Z. H., 2005. "Single machine scheduling to minimize total weighted tardiness," European Journal of Operational Research, Elsevier, vol. 165(2), pages 423-443, September.
  57. P. Detti & D. Pacciarelli, 2001. "A branch and bound algorithm for the minimum storage‐time sequencing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(4), pages 313-331, June.
  58. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
  59. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
  60. S.S. Panwalkar & Christos Koulamas, 2015. "On equivalence between the proportionate flow shop and single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 595-603, October.
  61. Anna Arigliano & Gianpaolo Ghiani & Antonio Grieco & Emanuela Guerriero, 2017. "Single-machine time-dependent scheduling problems with fixed rate-modifying activities and resumable jobs," 4OR, Springer, vol. 15(2), pages 201-215, June.
  62. Liqi Zhang & Lingfa Lu, 2016. "Parallel-machine scheduling with release dates and rejection," 4OR, Springer, vol. 14(2), pages 165-172, June.
  63. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
  64. C. Sriskandarajah, 1990. "A note on the generalized due dates scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 587-597, August.
  65. Chanas, Stefan & Kasperski, Adam, 2003. "On two single machine scheduling problems with fuzzy processing times and fuzzy due dates," European Journal of Operational Research, Elsevier, vol. 147(2), pages 281-296, June.
  66. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
  67. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
  68. Xingong Zhang & Win-Chin Lin & Chin-Chia Wu, 2022. "Rescheduling problems with allowing for the unexpected new jobs arrival," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 630-645, April.
  69. Huo, Yumei & Leung, Joseph Y.-T. & Zhao, Hairong, 2007. "Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 116-134, February.
  70. Davari, Morteza & Ranjbar, Mohammad & De Causmaecker, Patrick & Leus, Roel, 2020. "Minimizing makespan on a single machine with release dates and inventory constraints," European Journal of Operational Research, Elsevier, vol. 286(1), pages 115-128.
  71. Alessandro Agnetis & Dario Pacciarelli & Andrea Pacifici, 2007. "Multi-agent single machine scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 3-15, March.
  72. Gur Mosheiov & Assaf Sarig, 2023. "A note on lot scheduling on a single machine to minimize maximum weighted tardiness," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-11, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.