IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v9y2016i6p449-d72331.html
   My bibliography  Save this item

Variability Characteristics of European Wind and Solar Power Resources—A Review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
  2. Krzysztof Dmytrów & Beata Bieszk-Stolorz & Joanna Landmesser-Rusek, 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method," Energies, MDPI, vol. 15(20), pages 1-17, October.
  3. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
  4. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
  5. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
  6. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
  7. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  8. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
  9. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
  10. Liu, Guangbiao & Zhou, Jianzhong & Jia, Benjun & He, Feifei & Yang, Yuqi & Sun, Na, 2019. "Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method," Applied Energy, Elsevier, vol. 238(C), pages 643-667.
  11. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
  12. Keeratimahat, Kanyawee & Bruce, Anna & MacGill, Iain, 2021. "Analysis of short-term operational forecast deviations and controllability of utility-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 167(C), pages 343-358.
  13. Antun Meglic & Ranko Goic, 2022. "Impact of Time Resolution on Curtailment Losses in Hybrid Wind-Solar PV Plants," Energies, MDPI, vol. 15(16), pages 1-26, August.
  14. Mike Brian Ndawula & Sasa Z. Djokic & Ignacio Hernando-Gil, 2019. "Reliability Enhancement in Power Networks under Uncertainty from Distributed Energy Resources," Energies, MDPI, vol. 12(3), pages 1-24, February.
  15. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
  16. Frank, Christopher & Fiedler, Stephanie & Crewell, Susanne, 2021. "Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries," Renewable Energy, Elsevier, vol. 163(C), pages 674-684.
  17. Juan-Manuel Roldan-Fernandez & Javier Serrano-Gonzalez & Francisco Gonzalez-Longatt & Manuel Burgos-Payan, 2021. "Impact of Spanish Offshore Wind Generation in the Iberian Electricity Market: Potential Savings and Policy Implications," Energies, MDPI, vol. 14(15), pages 1-17, July.
  18. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  19. Miguel Blanco & Marcos Ferasso & Lydia Bares, 2021. "Evaluation of the Effects on Regional Production and Employment in Spain of the Renewable Energy Plan 2011–2020," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
  20. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
  21. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Impact of the Complementarity between Variable Generation Resources and Load on the Flexibility of the Korean Power System," Energies, MDPI, vol. 10(11), pages 1-13, October.
  22. Densing, Martin & Wan, Yi, 2022. "Low-dimensional scenario generation method of solar and wind availability for representative days in energy modeling," Applied Energy, Elsevier, vol. 306(PB).
  23. Shiyu Liu & Gengfeng Li & Haipeng Xie & Xifan Wang, 2017. "Correlation Characteristic Analysis for Wind Speed in Different Geographical Hierarchies," Energies, MDPI, vol. 10(2), pages 1-20, February.
  24. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
  25. Hansjörg Drewello, 2022. "Towards a Theory of Local Energy Transition," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
  26. Acevedo, Giancarlo & Bernales, Alejandro & Flores, Andrés & Inzunza, Andrés & Moreno, Rodrigo, 2021. "The effect of environmental policies on risk reductions in energy generation," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
  27. Wang, Yi-Hui & Walter, Ryan K. & White, Crow & Farr, Hayley & Ruttenberg, Benjamin I., 2019. "Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast," Renewable Energy, Elsevier, vol. 133(C), pages 343-353.
  28. Frank, Christopher W. & Pospichal, Bernhard & Wahl, Sabrina & Keller, Jan D. & Hense, Andreas & Crewell, Susanne, 2020. "The added value of high resolution regional reanalyses for wind power applications," Renewable Energy, Elsevier, vol. 148(C), pages 1094-1109.
  29. António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
  30. Kariuki, Boniface Wainaina & Sato, Tomonori, 2018. "Interannual and spatial variability of solar radiation energy potential in Kenya using Meteosat satellite," Renewable Energy, Elsevier, vol. 116(PA), pages 88-96.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.