Author
Listed:
- Jiachen Bian
(Smart Mobility and Infrastructure Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA)
- Jidong J. Yang
(Smart Mobility and Infrastructure Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA)
Abstract
Renewable energy sources, such as solar and wind power, are gaining increasing global attention. To facilitate their integration into transportation infrastructure, this paper proposes a multi-criteria assessment framework for identifying the most suitable renewable energy sources for street lighting at any given location. The framework evaluates three key metrics: cost–benefit, reliability, and power generation potential, using time-series weather data. To demonstrate its effectiveness, we apply the framework to data from Georgia, USA. The results show that the proposed approach effectively classifies locations into four categories: solar-recommended, wind-recommended, hybrid-recommended, and no recommendation. Specifically, wind energy is primarily recommended in the southeastern region near the coastline, while solar energy is favored in the northwestern region. A hybrid of both sources is mainly recommended along the coast and in transitional areas. In several isolated parts of the northwest, neither energy source is recommended due to unfavorable weather conditions influenced by the local terrain. Since processing long-term time-series data is computationally intensive and challenging during inference, we train machine learning models, including Multilayer Perceptron (MLP) and Extreme Gradient Boosting (XGBoost), using temporally aggregated features for efficient and rapid decision-making. The MLP model achieves an overall accuracy of 92.4%, while XGBoost further improves accuracy to 94.3%. This study provides a practical reference for regional energy infrastructure planning, promoting optimized renewable energy use in street lighting through a robust, data-driven evaluation framework.
Suggested Citation
Jiachen Bian & Jidong J. Yang, 2025.
"Smart Street Lighting Powered by Renewable Energy: A Multi-Criteria, Data-Driven Decision Framework,"
Sustainability, MDPI, vol. 17(13), pages 1-19, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:5874-:d:1687850
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5874-:d:1687850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.