IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v10y2017i4p512-d95404.html
   My bibliography  Save this item

An Online SOC and SOH Estimation Model for Lithium-Ion Batteries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wenyu Qu & Guici Chen & Tingting Zhang, 2022. "An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(19), pages 1-18, October.
  2. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
  3. Thien-An Nguyen-Huu & Van Thang Nguyen & Kyeon Hur & Jae Woong Shim, 2020. "Coordinated Control of a Hybrid Energy Storage System for Improving the Capability of Frequency Regulation and State-of-Charge Management," Energies, MDPI, vol. 13(23), pages 1-21, November.
  4. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
  5. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
  6. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
  7. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
  8. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
  9. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
  10. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
  11. Wust, J. & Bekker, J. & Booysen, M.J., 2025. "Investigating scheduling of minibus taxis in South Africa's eventual electric paratransit," Journal of Transport Geography, Elsevier, vol. 123(C).
  12. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
  13. Angelo Bonfitto, 2020. "A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks," Energies, MDPI, vol. 13(10), pages 1-13, May.
  14. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
  15. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.
  16. Qiaohua Fang & Xuezhe Wei & Tianyi Lu & Haifeng Dai & Jiangong Zhu, 2019. "A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model," Energies, MDPI, vol. 12(7), pages 1-18, April.
  17. Damian Burzyński & Robert Pietracho & Leszek Kasprzyk & Andrzej Tomczewski, 2019. "Analysis and Modeling of the Wear-Out Process of a Lithium-Nickel-Manganese-Cobalt Cell during Cycling Operation under Constant Load Conditions," Energies, MDPI, vol. 12(20), pages 1-12, October.
  18. Li, Kuo & Gao, Xiao & Liu, Caixia & Chang, Chun & Li, Xiaoyu, 2023. "A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method," Energy, Elsevier, vol. 269(C).
  19. Sergi Obrador Rey & Juan Alberto Romero & Lluis Trilla Romero & Àlber Filbà Martínez & Xavier Sanchez Roger & Muhammad Attique Qamar & José Luis Domínguez-García & Levon Gevorkov, 2023. "Powering the Future: A Comprehensive Review of Battery Energy Storage Systems," Energies, MDPI, vol. 16(17), pages 1-21, September.
  20. Sungwoo Jo & Sunkyu Jung & Taemoon Roh, 2021. "Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge," Energies, MDPI, vol. 14(21), pages 1-16, November.
  21. Zhonghua Yun & Wenhu Qin & Weipeng Shi & Peng Ping, 2020. "State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
  22. Donghoon Shin & Beomjin Yoon & Seungryeol Yoo, 2021. "Compensation Method for Estimating the State of Charge of Li-Polymer Batteries Using Multiple Long Short-Term Memory Networks Based on the Extended Kalman Filter," Energies, MDPI, vol. 14(2), pages 1-19, January.
  23. Jose Antonio Ramos-Hernanz & Daniel Teso-Fz-Betoño & Iñigo Aramendia & Markel Erauzquin & Erol Kurt & Jose Manuel Lopez-Guede, 2025. "Smart Low-Cost On-Board Charger for Electric Vehicles Using Arduino-Based Control," Energies, MDPI, vol. 18(8), pages 1-18, April.
  24. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
  25. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  26. Chen, Xiang & Deng, Yelin & Wang, Xingxing & Yuan, Yinnan, 2024. "The capacity degradation path prediction for the prismatic lithium-ion batteries based on the multi-features extraction with SGPR," Energy, Elsevier, vol. 299(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.