IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v103y2017icp208-226.html
   My bibliography  Save this item

Optimal assignment and incentive design in the taxi group ride problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
  2. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
  3. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
  4. Andres Fielbaum & Maximilian Kronmueller & Javier Alonso-Mora, 2022. "Anticipatory routing methods for an on-demand ridepooling mobility system," Transportation, Springer, vol. 49(6), pages 1921-1962, December.
  5. Chen, Xiqun (Michael) & Zheng, Hongyu & Ke, Jintao & Yang, Hai, 2020. "Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and incentives," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 23-45.
  6. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
  7. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
  8. Zheyin Jin & Ye Li & Dominique Gruyer & Meiting Tu, 2024. "Enhancing the Carbon Reduction Potential in Ridesplitting through Evolutionary Game Strategies of Tripartite Stakeholders under Carbon-Inclusive Policy," Energies, MDPI, vol. 17(16), pages 1-21, August.
  9. Daniel Y. Mo & H. Y. Lam & Weikun Xu & G. T. S. Ho, 2020. "Design of Flexible Vehicle Scheduling Systems for Sustainable Paratransit Services," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
  10. Yu, Xinlian & Gao, Song & Hu, Xianbiao & Park, Hyoshin, 2019. "A Markov decision process approach to vacant taxi routing with e-hailing," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 114-134.
  11. Bahrami, Sina & Nourinejad, Mehdi & Nesheli, Mahmood Mahmoodi & Yin, Yafeng, 2022. "Optimal composition of solo and pool services for on-demand ride-hailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
  12. Wenbo Zhang & Tho V. Le & Satish V. Ukkusuri & Ruimin Li, 2020. "Influencing factors and heterogeneity in ridership of traditional and app-based taxi systems," Transportation, Springer, vol. 47(2), pages 971-996, April.
  13. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
  14. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
  15. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
  16. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
  17. Jorge, Diana & Rocha, Tomás & Ramos, Tânia Rodrigues Pereira, 2024. "A time-driven simulation–optimization framework for the dynamic heterogeneous order-courier assignment problem for instant deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  18. Liu, Yuhan & Yang, Hai & Qin, Xiaoran, 2024. "An incentive strategy for the retention of impatient passengers in ride-sourcing markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  19. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
  20. Chaojun Wang & Jingwei Wang & Yi Zhang & Jairus Odawa Malenje & Yin Han, 2024. "Optimizing Taxi-Pooling Operations to Enhance Efficiency and Revenue: A Queuing Model Approach," Mathematics, MDPI, vol. 12(20), pages 1-22, October.
  21. Kucharski, Rafał & Cats, Oded, 2020. "Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 285-310.
  22. Bo Yang & Shen Ren & Erika Fille Legara & Zengxiang Li & Edward Y. X. Ong & Louis Lin & Christopher Monterola, 2020. "Phase Transition in Taxi Dynamics and Impact of Ridesharing," Transportation Science, INFORMS, vol. 54(1), pages 250-273, January.
  23. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
  24. Zhu, Zheng & Ke, Jintao & Wang, Hai, 2021. "A mean-field Markov decision process model for spatial-temporal subsidies in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 540-565.
  25. Ji, Yuxiong & Zhou, Minhang & Zheng, Yujing & Shen, Yu & Du, Yuchuan, 2024. "Urban passenger-and-package sharing transportation by e-hailing taxis: A simulation-based pricing analysis in shanghai," Transport Policy, Elsevier, vol. 156(C), pages 138-151.
  26. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
  27. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
  28. Li, Baicheng & Szeto, W.Y., 2019. "Taxi service area design: Formulation and analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 308-333.
  29. Mo, Dong & Yu, Jingru & Chen, Xiqun Michael, 2020. "Modeling and managing heterogeneous ride-sourcing platforms with government subsidies on electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 447-472.
  30. Chen, Tiantian & Fu, Xiaowen & Hensher, David A. & Li, Zhi-Chun & Sze, N.N., 2024. "Effects of proactive and reactive health control measures on public transport preferences of passengers – A stated preference study during the COVID-19 pandemic," Transport Policy, Elsevier, vol. 146(C), pages 175-192.
  31. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
  32. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
  33. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.