IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v32y2014icp671-683.html
   My bibliography  Save this item

Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
  2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
  3. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
  4. Jia, Min & Zhang, Zhe & Zhang, Li & Zhao, Liang & Lu, Xinbo & Li, Linyan & Ruan, Jianhui & Wu, Yunlong & He, Zhuoming & Liu, Mei & Jiang, Lingling & Gao, Yajing & Wu, Pengcheng & Zhu, Shuying & Niu, M, 2024. "Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China," Applied Energy, Elsevier, vol. 373(C).
  5. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
  6. Deng, Xu & Lv, Tao & Xu, Jie & Hou, Xiaoran & Liu, Feng, 2022. "Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China," Energy Policy, Elsevier, vol. 170(C).
  7. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
  8. Zhong-Hua Tian & Ze-Liang Yang, 2016. "Scenarios of Carbon Emissions from the Power Sector in Guangdong Province," Sustainability, MDPI, vol. 8(9), pages 1-14, August.
  9. Ren, Shenggang & Bao, Ruizhi & Gao, Zhengye, 2025. "Arrival of distant power: The impact of ultra-high voltage transmission projects on energy structure in China," Energy, Elsevier, vol. 316(C).
  10. Wang, Hui & Zhang, Yunyun & Lin, Weifen & Wei, Wendong, 2023. "Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China," Energy Economics, Elsevier, vol. 123(C).
  11. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
  12. Zhang, Hongyu & Deji, Wangzhen & Farinotti, Daniel & Zhang, Da & Huang, Junling, 2024. "The role of Xizang in China's transition towards a carbon-neutral power system," Energy, Elsevier, vol. 313(C).
  13. He, Ruofan & Wan, Panbing & Yang, Mian, 2024. "The resource curse in energy-rich regions: Evidence from China's ultra-high voltage transmission," Energy, Elsevier, vol. 304(C).
  14. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
  15. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2016. "The impact of inter-regional transmission grid expansion on China’s power sector decarbonization," Applied Energy, Elsevier, vol. 183(C), pages 853-873.
  16. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
  17. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
  18. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
  19. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
  20. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  21. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
  22. Xiaohua Song & Xubei Zhang & Yun Long & Yiwei Guo, 2017. "Study on the Evolution Mechanism and Development Forecasting of China’s Power Supply Structure Clean Development," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
  23. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  24. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
  25. Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
  26. Kassel, Drew A. & Rhodes, Joshua D. & Webber, Michael E., 2025. "A method to analyze the costs and emissions tradeoffs of connecting ERCOT to WECC," Applied Energy, Elsevier, vol. 378(PA).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.