IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v21y2013icp572-581.html
   My bibliography  Save this item

Review of power curve modelling for wind turbines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Virgolino, Gustavo C.M. & Mattos, César L.C. & Magalhães, José Augusto F. & Barreto, Guilherme A., 2020. "Gaussian processes with logistic mean function for modeling wind turbine power curves," Renewable Energy, Elsevier, vol. 162(C), pages 458-465.
  2. van der Wiel, K. & Stoop, L.P. & van Zuijlen, B.R.H. & Blackport, R. & van den Broek, M.A. & Selten, F.M., 2019. "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 261-275.
  3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
  4. Pearre, Nathaniel S. & Swan, Lukas G., 2018. "Spatial and geographic heterogeneity of wind turbine farms for temporally decoupled power output," Energy, Elsevier, vol. 145(C), pages 417-429.
  5. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
  6. Julio César Cuenca Tinitana & Carlos Adrian Correa-Florez & Diego Patino & José Vuelvas, 2020. "Spatio-Temporal Kriging Based Economic Dispatch Problem Including Wind Uncertainty," Energies, MDPI, vol. 13(23), pages 1-26, December.
  7. Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
  8. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
  9. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
  10. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
  11. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
  12. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
  13. Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando L., 2021. "A generalized dynamical model for wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  14. Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
  15. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
  16. Wu, Huijuan & Meng, Keqilao & Fan, Daoerji & Zhang, Zhanqiang & Liu, Qing, 2022. "Multistep short-term wind speed forecasting using transformer," Energy, Elsevier, vol. 261(PA).
  17. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
  18. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
  19. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
  20. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
  21. Manobel, Bartolomé & Sehnke, Frank & Lazzús, Juan A. & Salfate, Ignacio & Felder, Martin & Montecinos, Sonia, 2018. "Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 125(C), pages 1015-1020.
  22. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
  23. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
  24. Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
  25. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
  26. Seo, Seokho & Oh, Si-Doek & Kwak, Ho-Young, 2019. "Wind turbine power curve modeling using maximum likelihood estimation method," Renewable Energy, Elsevier, vol. 136(C), pages 1164-1169.
  27. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
  28. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
  29. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
  30. Duca, Victor E.L.A. & Fonseca, Thais C.O. & Cyrino Oliveira, Fernando Luiz, 2022. "Joint modelling wind speed and power via Bayesian Dynamical models," Energy, Elsevier, vol. 247(C).
  31. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2020. "Wind turbine power curve modeling for reliable power prediction using monotonic regression," Renewable Energy, Elsevier, vol. 147(P1), pages 214-222.
  32. Johansson, V. & Thorson, L. & Goop, J. & Göransson, L. & Odenberger, M. & Reichenberg, L. & Taljegard, M. & Johnsson, F., 2017. "Value of wind power – Implications from specific power," Energy, Elsevier, vol. 126(C), pages 352-360.
  33. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
  34. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
  35. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
  36. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
  37. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
  38. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
  39. Petrović, A. & Đurišić, Ž., 2021. "Genetic algorithm based optimized model for the selection of wind turbine for any site-specific wind conditions," Energy, Elsevier, vol. 236(C).
  40. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
  41. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
  42. Wang, Longyan & Tan, Andy C.C. & Gu, Yuantong & Yuan, Jianping, 2015. "A new constraint handling method for wind farm layout optimization with lands owned by different owners," Renewable Energy, Elsevier, vol. 83(C), pages 151-161.
  43. Rubert, T. & McMillan, D. & Niewczas, P., 2018. "A decision support tool to assist with lifetime extension of wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 423-433.
  44. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
  45. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
  46. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
  47. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
  48. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
  49. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
  50. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
  51. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
  52. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
  53. Masseran, Nurulkamal, 2015. "Evaluating wind power density models and their statistical properties," Energy, Elsevier, vol. 84(C), pages 533-541.
  54. Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
  55. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
  56. Tautz-Weinert, Jannis & Yürüşen, Nurseda Y. & Melero, Julio J. & Watson, Simon J., 2019. "Sensitivity study of a wind farm maintenance decision - A performance and revenue analysis," Renewable Energy, Elsevier, vol. 132(C), pages 93-105.
  57. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
  58. Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
  59. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.