IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v14y2010i4p1321-1328.html
   My bibliography  Save this item

A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
  2. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
  3. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
  4. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2015. "Lifecycle CO 2 Reduction by Implementing Double Window Casement Systems in Residential Units in Korea," Energies, MDPI, vol. 8(2), pages 1-17, February.
  5. Yuan Zheng & Yuan Sun & Zhu Wang & Feng Liang, 2022. "Developing Green–Building Design Strategies in the Yangtze River Delta, China through a Coupling Relationship between Geomorphology and Climate," Land, MDPI, vol. 12(1), pages 1-22, December.
  6. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
  7. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
  8. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
  9. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Transparent and translucent solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2643-2651.
  10. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.
  11. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
  12. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
  13. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
  14. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
  15. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
  16. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2014. "Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea," Sustainability, MDPI, vol. 6(10), pages 1-23, October.
  17. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  18. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
  19. Pomponi, Francesco & Piroozfar, Poorang A.E. & Southall, Ryan & Ashton, Philip & Farr, Eric. R.P., 2016. "Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1525-1536.
  20. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
  21. Carvalho, M.M.Q. & La Rovere, E.L. & Gonçalves, A.C.M., 2010. "Analysis of variables that influence electric energy consumption in commercial buildings in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3199-3205, December.
  22. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
  23. Nasrollahi, Nazanin & Salehi, Majid, 2015. "Performance enhancement of double skin facades in hot and dry climates using wind parameters," Renewable Energy, Elsevier, vol. 83(C), pages 1-12.
  24. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
  25. Safikhani, Tabassom & Abdullah, Aminatuzuhariah Megat & Ossen, Dilshan Remaz & Baharvand, Mohammad, 2014. "A review of energy characteristic of vertical greenery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 450-462.
  26. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
  27. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
  28. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
  29. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
  30. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
  31. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.