IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v13y2009i1p216-222.html
   My bibliography  Save this item

The key technology of offshore wind farm and its new development in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  2. Yin, Xiuxing & Zhao, Xiaowei & Lin, Jin & Karcanias, Aris, 2020. "Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations," Energy, Elsevier, vol. 202(C).
  3. Zhang, Shijie & Wei, Jing & Chen, Xi & Zhao, Yuhao, 2020. "China in global wind power development: Role, status and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  4. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
  5. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
  6. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
  7. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
  8. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
  9. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
  10. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
  11. Wu, Jie & Wang, Zhi-Xin & Wang, Guo-Qiang, 2014. "The key technologies and development of offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 453-462.
  12. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
  13. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
  14. Binkai, Jiang & Zhixin, Wang, 2016. "The key technologies of VSC-MTDC and its application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 297-304.
  15. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
  16. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
  17. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
  18. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
  19. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
  20. Yan, Yangtian & Yang, Yang & Bashir, Musa & Li, Chun & Wang, Jin, 2022. "Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings," Renewable Energy, Elsevier, vol. 193(C), pages 758-777.
  21. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
  22. Velasco, D. & Trujillo, C.L. & Peña, R.A., 2011. "Power transmission in direct current. Future expectations for Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 759-765, January.
  23. Islam, A.B.M. Saiful & Jameel, Mohammed & Jumaat, Mohd Zamin & Shirazi, S.M. & Salman, Firas A., 2012. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6268-6284.
  24. Ochieng, E.G. & Melaine, Y. & Potts, S.J. & Zuofa, T. & Egbu, C.O. & Price, A.D.F. & Ruan, X., 2014. "Future for offshore wind energy in the United Kingdom: The way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 655-666.
  25. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
  26. Ling, Yu & Cai, Xu, 2012. "Exploitation and utilization of the wind power and its perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2111-2117.
  27. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.