IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v55y2013icp305-321.html
   My bibliography  Save this item

Wave energy resources along the Hawaiian Island chain

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
  2. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
  3. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
  4. Ahn, Seongho & Neary, Vincent S. & Haas, Kevin A., 2022. "Global wave energy resource classification system for regional energy planning and project development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  5. Jonathan C. Pacaldo & Princess Hope T. Bilgera & Michael Lochinvar S. Abundo, 2022. "Nearshore Wave Energy Resource Assessment for Off-Grid Islands: A Case Study in Cuyo Island, Palawan, Philippines," Energies, MDPI, vol. 15(22), pages 1-29, November.
  6. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
  7. Kisel, Einari & Hamburg, Arvi & Härm, Mihkel & Leppiman, Ando & Ots, Märt, 2016. "Concept for Energy Security Matrix," Energy Policy, Elsevier, vol. 95(C), pages 1-9.
  8. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
  9. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
  10. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
  11. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
  12. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
  13. Kessides, Ioannis N., 2014. "Powering Africa׳s sustainable development: The potential role of nuclear energy," Energy Policy, Elsevier, vol. 74(S1), pages 57-70.
  14. Jade M S Delevaux & Robert Whittier & Kostantinos A Stamoulis & Leah L Bremer & Stacy Jupiter & Alan M Friedlander & Matthew Poti & Greg Guannel & Natalie Kurashima & Kawika B Winter & Robert Toonen &, 2018. "A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-37, March.
  15. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
  16. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
  17. Mirzaei, Ali & Tangang, Fredolin & Juneng, Liew, 2015. "Wave energy potential assessment in the central and southern regions of the South China Sea," Renewable Energy, Elsevier, vol. 80(C), pages 454-470.
  18. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
  19. Sun, Ze & Zhang, Haicheng & Xu, Daolin & Liu, Xiaolong & Ding, Jun, 2020. "Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data," Energy, Elsevier, vol. 197(C).
  20. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
  21. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
  22. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
  23. Allahdadi, M. Nabi & Gunawan, Budi & Lai, Jonathan & He, Ruoying & Neary, Vincent S., 2019. "Development and validation of a regional-scale high-resolution unstructured model for wave energy resource characterization along the US East Coast," Renewable Energy, Elsevier, vol. 136(C), pages 500-511.
  24. Ozkan, Cigdem & Mayo, Talea, 2019. "The renewable wave energy resource in coastal regions of the Florida peninsula," Renewable Energy, Elsevier, vol. 139(C), pages 530-537.
  25. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
  26. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
  27. Canals Silander, Miguel F. & García Moreno, Carlos G., 2019. "On the spatial distribution of the wave energy resource in Puerto Rico and the United States Virgin Islands," Renewable Energy, Elsevier, vol. 136(C), pages 442-451.
  28. Lee, Taedong & Glick, Mark B. & Lee, Jae-Hyup, 2020. "Island energy transition: Assessing Hawaii's multi-level, policy-driven approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  29. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
  30. Sierra, J.P. & Casas-Prat, M. & Campins, E., 2017. "Impact of climate change on wave energy resource: The case of Menorca (Spain)," Renewable Energy, Elsevier, vol. 101(C), pages 275-285.
  31. Li, Ning & García-Medina, Gabriel & Cheung, Kwok Fai & Yang, Zhaoqing, 2021. "Wave energy resources assessment for the multi-modal sea state of Hawaii," Renewable Energy, Elsevier, vol. 174(C), pages 1036-1055.
  32. Sun, Ze & Zhang, Haicheng & Liu, Xiaolong & Ding, Jun & Xu, Daolin & Cai, Zhiwen, 2021. "Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019," Energy, Elsevier, vol. 220(C).
  33. Huang, Weinan & Dong, Sheng, 2021. "Improved short-term prediction of significant wave height by decomposing deterministic and stochastic components," Renewable Energy, Elsevier, vol. 177(C), pages 743-758.
  34. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
  35. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
  36. Zhou, Guoqing & Huang, Jingjin & Yue, Tao & Luo, Qingli & Zhang, Guangyun, 2015. "Temporal-spatial distribution of wave energy: A case study of Beibu Gulf, China," Renewable Energy, Elsevier, vol. 74(C), pages 344-356.
  37. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
  38. Rute Bento, A. & Martinho, Paulo & Guedes Soares, C., 2015. "Numerical modelling of the wave energy in Galway Bay," Renewable Energy, Elsevier, vol. 78(C), pages 457-466.
  39. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
  40. Ahn, Seongho & Neary, Vincent S. & Ha, Taemin, 2023. "A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates," Renewable Energy, Elsevier, vol. 207(C), pages 499-511.
  41. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
  42. Sanil Kumar, V. & Anoop, T.R., 2015. "Wave energy resource assessment for the Indian shelf seas," Renewable Energy, Elsevier, vol. 76(C), pages 212-219.
  43. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
  44. Mirzaei, Ali & Tangang, Fredolin & Juneng, Liew, 2014. "Wave energy potential along the east coast of Peninsular Malaysia," Energy, Elsevier, vol. 68(C), pages 722-734.
  45. Yaakob, Omar & Hashim, Farah Ellyza & Mohd Omar, Kamaludin & Md Din, Ami Hassan & Koh, Kho King, 2016. "Satellite-based wave data and wave energy resource assessment for South China Sea," Renewable Energy, Elsevier, vol. 88(C), pages 359-371.
  46. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2020. "Wave energy assessment based on a 33-year hindcast for the Canary Islands," Renewable Energy, Elsevier, vol. 152(C), pages 259-269.
  47. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
  48. Ilaria Carrozza, 2015. "Climate finance in the Asia-Pacific region: trends and innovative approaches," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 22(2), pages 71-102, December.
  49. Soumya Ghosh & Mrinmoy Majumder & Manish Pal, 2018. "Application of metaheuristic algorithm to identify priority parameters for the selection of feasible location having optimum wave energy potential," Energy & Environment, , vol. 29(1), pages 3-28, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.