IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v34y2009i1p335-342.html
   My bibliography  Save this item

Diesterol: An environment-friendly IC engine fuel

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
  2. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal F., 2011. "Algae as a sustainable energy source for biofuel production in Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3870-3876.
  3. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
  4. Kim, Tae Young & Lee, Seokhwan & Kang, Kernyong, 2015. "Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels," Energy, Elsevier, vol. 93(P2), pages 2241-2250.
  5. Kumar, Atul & Chen, Hsien-Wen & Yang, Shouyin, 2023. "Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup," Energy, Elsevier, vol. 266(C).
  6. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
  7. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
  8. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
  9. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Fattah, I.M. Rizwanul & Sanjid, A., 2014. "Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 379-395.
  10. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
  11. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
  12. Wander, P.R. & Altafini, C.R. & Colombo, A.L. & Perera, S.C., 2011. "Durability studies of mono-cylinder compression ignition engines operating with diesel, soy and castor oil methyl esters," Energy, Elsevier, vol. 36(6), pages 3917-3923.
  13. Pradelle, Florian & Leal Braga, Sergio & Fonseca de Aguiar Martins, Ana Rosa & Turkovics, Franck & Nohra Chaar Pradelle, Renata, 2019. "Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Potential as diesel fuel substitute on an Euro III engine," Renewable Energy, Elsevier, vol. 136(C), pages 586-598.
  14. Obed M. Ali & Talal Yusaf & Rizalman Mamat & Nik R. Abdullah & Abdul Adam Abdullah, 2014. "Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics," Energies, MDPI, vol. 7(7), pages 1-17, July.
  15. N, Santhosh & Afzal, Asif & V, Srikanth H. & Ağbulut, Ümit & Alahmadi, Ahmad Aziz & Gowda, Ashwin C. & Alwetaishi, Mamdooh & Shaik, Saboor & Hoang, Anh Tuan, 2023. "Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization," Energy, Elsevier, vol. 270(C).
  16. Ahmed Sule & Zulkarnain Abdul Latiff & Mohd Azman Abas & Ibham Veza & Manzoore Elahi M. Soudagar & Irianto Harny & Vorathin Epin, 2023. "Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
  17. Saddam H. Al-lwayzy & Talal Yusaf, 2015. "Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel," Energies, MDPI, vol. 8(12), pages 1-11, December.
  18. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
  19. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
  20. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
  21. Kandasamy, Senthil Kumar & Selvaraj, Arun Saco & Rajagopal, Thundil Karuppa Raj, 2019. "Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics," Renewable Energy, Elsevier, vol. 141(C), pages 411-419.
  22. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
  23. Ahmad Fitri Yusop & Rizalman Mamat & Talal Yusaf & Gholamhassan Najafi & Mohd Hafizil Mat Yasin & Akasyah Mohd Khathri, 2018. "Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel," Energies, MDPI, vol. 11(5), pages 1-25, April.
  24. Shadidi, Behdad & Yusaf, Talal & Alizadeh, Hossein Haji Agha & Ghobadian, Barat, 2014. "Experimental investigation of the tractor engine performance using diesohol fuel," Applied Energy, Elsevier, vol. 114(C), pages 874-879.
  25. Srikanth, H.V. & G, Sharanappa & Manne, Bhaskar & Kumar, S. Bharath, 2021. "Niger seed oil biodiesel as an emulsifier in diesel-ethanol blends for compression ignition engine," Renewable Energy, Elsevier, vol. 163(C), pages 1467-1478.
  26. Noorollahi, Yaser & Azadbakht, Mohsen & Ghobadian, Barat, 2018. "The effect of different diesterol (diesel–biodiesel–ethanol) blends on small air-cooled diesel engine performance and its exhaust gases," Energy, Elsevier, vol. 142(C), pages 196-200.
  27. Behdad Shadidi & Hossein Haji Agha Alizade & Gholamhassan Najafi, 2021. "The Influence of Diesel–Ethanol Fuel Blends on Performance Parameters and Exhaust Emissions: Experimental Investigation and Multi-Objective Optimization of a Diesel Engine," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
  28. Jegannathan, Kenthorai Raman & Chan, Eng-Seng & Ravindra, Pogaku, 2009. "Harnessing biofuels: A global Renaissance in energy production?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2163-2168, October.
  29. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Ashraful, A.M., 2015. "Performance and emission assessment of diesel–biodiesel–ethanol/bioethanol blend as a fuel in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 62-78.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.