IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v177y2021icp101-112.html
   My bibliography  Save this item

Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nikola Mišnić & Bojan Pejović & Jelena Jovović & Sunčica Rogić & Vladimir Đurišić, 2022. "The Economic Viability of PV Power Plant Based on a Neural Network Model of Electricity Prices Forecast: A Case of a Developing Market," Energies, MDPI, vol. 15(17), pages 1-14, August.
  2. Juntao Li & Tianxu Cui & Kaiwen Yang & Ruiping Yuan & Liyan He & Mengtao Li, 2021. "Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated Learning from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
  3. Zhang, Zongbin & Huang, Xiaoqiao & Li, Chengli & Cheng, Feiyan & Tai, Yonghang, 2025. "CRAformer: A cross-residual attention transformer for solar irradiation multistep forecasting," Energy, Elsevier, vol. 320(C).
  4. Ruizhi Ji, 2024. "Research on Factors Influencing Global Carbon Emissions and Forecasting Models," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
  5. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
  6. Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
  7. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
  8. Liao, Zhouyi & Coimbra, Carlos F.M., 2024. "Hybrid solar irradiance nowcasting and forecasting with the SCOPE method and convolutional neural networks," Renewable Energy, Elsevier, vol. 232(C).
  9. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
  10. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  11. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
  12. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
  13. Liu, Jincheng & Li, Teng, 2024. "Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model," Energy, Elsevier, vol. 293(C).
  14. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
  15. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
  16. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
  17. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho & Acharya, Rajendra & Dinh, Toan, 2025. "Electricity demand uncertainty modeling with Temporal Convolution Neural Network models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  18. Luo, Xing & Zhang, Dongxiao, 2023. "A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs," Energy, Elsevier, vol. 268(C).
  19. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  20. Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
  21. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
  22. Liu, Zhi-Feng & Chen, Xiao-Rui & Huang, Ya-He & Luo, Xing-Fu & Zhang, Shu-Rui & You, Guo-Dong & Qiang, Xiao-Yong & Kang, Qing, 2024. "A novel bimodal feature fusion network-based deep learning model with intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting," Energy, Elsevier, vol. 303(C).
  23. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
  24. Adela Bâra & Simona‐Vasilica Oprea, 2024. "Embedding the weather prediction errors (WPE) into the photovoltaic (PV) forecasting method using deep learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1173-1198, August.
  25. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
  26. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
  27. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
  28. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
  29. Xiaohan Huang & Aihua Jiang, 2022. "Wind Power Generation Forecast Based on Multi-Step Informer Network," Energies, MDPI, vol. 15(18), pages 1-17, September.
  30. Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).
  31. Parenti, Mattia & Fossa, Marco & Delucchi, Lorenzo, 2024. "A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
  32. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
  33. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
  34. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
  35. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).
  36. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
  37. Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
  38. Dušan P. Nikezić & Uzahir R. Ramadani & Dušan S. Radivojević & Ivan M. Lazović & Nikola S. Mirkov, 2022. "Deep Learning Model for Global Spatio-Temporal Image Prediction," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
  39. Xie, Yang & Zheng, Jianyong & Mei, Fei & Taylor, Gareth & Gao, Ang, 2025. "An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning," Applied Energy, Elsevier, vol. 385(C).
  40. Li, Yifan & Liu, Gang & Cao, Yisheng & Chen, Jiawei & Gang, Xiao & Tang, Jianchao, 2025. "WNPS-LSTM-Informer: A Hybrid Stacking model for medium-term photovoltaic power forecasting with ranked feature selection," Renewable Energy, Elsevier, vol. 244(C).
  41. Amirhossein Amini & Robab Kalantari, 2024. "Gold price prediction by a CNN-Bi-LSTM model along with automatic parameter tuning," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-17, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.