IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v54y2015icp173-190.html
   My bibliography  Save this item

A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hong, Zhaofu & Guo, Xiaolong, 2019. "Green product supply chain contracts considering environmental responsibilities," Omega, Elsevier, vol. 83(C), pages 155-166.
  2. Angels Niñerola & Ramon Ferrer-Rullan & Antoni Vidal-Suñé, 2020. "Climate Change Mitigation: Application of Management Production Philosophies for Energy Saving in Industrial Processes," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
  3. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
  4. Cagatay Tasdemir & Rado Gazo, 2018. "A Systematic Literature Review for Better Understanding of Lean Driven Sustainability," Sustainability, MDPI, vol. 10(7), pages 1-54, July.
  5. Tomohiko Sakao & Tatsunori Hara & Ryo Fukushima, 2020. "Using Product/Service-System Family Design for Efficient Customization with Lean Principles: Model, Method, and Tool," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
  6. Jiguang Wang & Jianhong Chang & Yucai Wu, 2020. "The Optimal Production Decision of Competing Supply Chains When Considering Green Degree: A Game-Theoretic Approach," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  7. Piera Centobelli & Roberto Cerchione & Emilio Esposito, 2018. "Environmental Sustainability and Energy-Efficient Supply Chain Management: A Review of Research Trends and Proposed Guidelines," Energies, MDPI, vol. 11(2), pages 1-36, January.
  8. Ahmad Rezaee & Farzad Dehghanian & Behnam Fahimnia & Benita Beamon, 2017. "Green supply chain network design with stochastic demand and carbon price," Annals of Operations Research, Springer, vol. 250(2), pages 463-485, March.
  9. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
  10. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
  11. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
  12. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
  13. Hongtao Ren & Wenji Zhou & Marek Makowski & Hongbin Yan & Yadong Yu & Tieju Ma, 2021. "Incorporation of life cycle emissions and carbon price uncertainty into the supply chain network management of PVC production," Annals of Operations Research, Springer, vol. 300(2), pages 601-620, May.
  14. Farnaz Barzinpour & Peyman Taki, 2018. "A dual-channel network design model in a green supply chain considering pricing and transportation mode choice," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1465-1483, October.
  15. Morteza Yazdani & Sarfaraz Hashemkhani Zolfani & Edmundas Kazimieras Zavadskas, 2016. "New integration of MCDM methods and QFD in the selection of green suppliers," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(6), pages 1097-1113, November.
  16. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
  17. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.
  18. Behnam Fahimnia & Joseph Sarkis & Angappa Gunasekaran & Reza Farahani, 2017. "Decision models for sustainable supply chain design and management," Annals of Operations Research, Springer, vol. 250(2), pages 277-278, March.
  19. Lijun Liu & Zhixin Long & Chuangchuang Kou & Haozeng Guo & Xinyu Li, 2023. "Evaluation of the Environmental Cost of Integrated Inbound Logistics: A Case Study of a Gigafactory of a Chinese Logistics Firm," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
  20. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
  21. Wang, Limin & Song, Qiankun, 2020. "Pricing policies for dual-channel supply chain with green investment and sales effort under uncertain demand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 79-93.
  22. Jaehn, Florian & Meissner, Finn, 2022. "The rebound effect in transportation," Omega, Elsevier, vol. 108(C).
  23. Mathiyazhagan, Kaliyan & Agarwal, Vernika & Appolloni, Andrea & Saikouk, Tarik & Gnanavelbabu, A, 2021. "Integrating lean and agile practices for achieving global sustainability goals in Indian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
  24. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
  25. Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
  26. Ahmad Fadavi & Fariborz Jolai & Ata Allah Taleizadeh, 2022. "Green product design in a supply chain with considering marketing under competition and coordination," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11721-11759, October.
  27. Gao, Jingzhe & Xiao, Zhongdong & Cao, Binbin & Chai, Qiangfei, 2018. "Green supply chain planning considering consumer’s transportation process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 311-330.
  28. Ruhaimatu Abudu & Shiyuan Zheng & Emmanuel Anu Thompson, 2021. "Port Adaptation and Efficiency: An Empirical Study of Ghanaian Ports," International Journal of Regional Development, Macrothink Institute, vol. 8(2), pages 1-36, December.
  29. Li Li & Weimin Li, 2022. "The Promoting Effect of Green Technology Innovations on Sustainable Supply Chain Development: Evidence from China’s Transport Sector," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
  30. Wadhah Abualfaraa & Konstantinos Salonitis & Ahmed Al-Ashaab & Maher Ala’raj, 2020. "Lean-Green Manufacturing Practices and Their Link with Sustainability: A Critical Review," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
  31. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
  32. Ludmiła Filina-Dawidowicz & Anna Wiktorowska-Jasik, 2022. "Contemporary problems and challenges of sustainable distribution of perishable cargoes: Case study of Polish cold port stores," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4434-4450, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.