My bibliography
Save this item
On the Harrison and Rubinfeld Data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
- Malikov, Emir & Sun, Yiguo, 2017.
"Semiparametric estimation and testing of smooth coefficient spatial autoregressive models,"
Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
- Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric Estimation and Testing of Smooth Coefficient Spatial Autoregressive Models," MPRA Paper 77253, University Library of Munich, Germany.
- Marwan Al-Momani, 2023. "Liu-type pretest and shrinkage estimation for the conditional autoregressive model," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-23, April.
- Marwan Al-Momani & Mohammad Arashi, 2024. "Ridge-Type Pretest and Shrinkage Estimation Strategies in Spatial Error Models with an Application to a Real Data Example," Mathematics, MDPI, vol. 12(3), pages 1-19, January.
- Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
- Yunquan Song & Minmin Zhan & Yue Zhang & Yongxin Liu, 2024. "Huber Loss Meets Spatial Autoregressive Model: A Robust Variable Selection Method with Prior Information," Networks and Spatial Economics, Springer, vol. 24(1), pages 291-311, March.
- Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
- Roger Bivand, 2017. "Revisiting the Boston data set - Changing the units of observation affects estimated willingness to pay for clean air," REGION, European Regional Science Association, vol. 4, pages 109-127.
- repec:asg:wpaper:1013 is not listed on IDEAS
- James P. LeSage & R. Kelley Pace, 2018. "Spatial econometric Monte Carlo studies: raising the bar," Empirical Economics, Springer, vol. 55(1), pages 17-34, August.
- Hu, Tianming & Sung, Sam Yuan, 2006. "A hybrid EM approach to spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1188-1205, March.
- Mu Yue & Jingxin Xi, 2025. "Sparse Boosting for Additive Spatial Autoregressive Model with High Dimensionality," Mathematics, MDPI, vol. 13(5), pages 1-16, February.
- Chen, Feng & Mei, Chang-Lin, 2021. "Scale-adaptive estimation of mixed geographically weighted regression models," Economic Modelling, Elsevier, vol. 94(C), pages 737-747.
- Takafumi Kato, 2013. "Usefulness of the Information Contained in the Prediction Sample for the Spatial Error Model," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 169-195, July.
- Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
- Ankur Moitra & Dhruv Rohatgi, 2022. "Provably Auditing Ordinary Least Squares in Low Dimensions," Papers 2205.14284, arXiv.org, revised Jun 2022.
- Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
- Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
- Takafumi Kato, 2020. "Likelihood-based strategies for estimating unknown parameters and predicting missing data in the simultaneous autoregressive model," Journal of Geographical Systems, Springer, vol. 22(1), pages 143-176, January.
- James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
- Tizheng Li & Yuping Wang & Ke Fang, 2024. "A semiparametric dynamic higher-order spatial autoregressive model," Statistical Papers, Springer, vol. 65(2), pages 1085-1123, April.
- Simlai, Prodosh, 2014. "Estimation of variance of housing prices using spatial conditional heteroskedasticity (SARCH) model with an application to Boston housing price data," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 17-30.
- Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
- Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
- Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Xiaowen Dai & Libin Jin & Anqi Shi & Lei Shi, 2016. "Outlier detection and accommodation in general spatial models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 453-475, August.
- Wei, Chuanhua & Guo, Shuang & Zhai, Shufen, 2017. "Statistical inference of partially linear varying coefficient spatial autoregressive models," Economic Modelling, Elsevier, vol. 64(C), pages 553-559.