IDEAS home Printed from https://ideas.repec.org/r/eee/finlet/v40y2021ics1544612320304864.html
   My bibliography  Save this item

Forecasting the price of Bitcoin using deep learning

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yilun Zhang & Yuping Song & Ying Peng & Hanchao Wang, 2024. "Volatility forecasting incorporating intraday positive and negative jumps based on deep learning model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2749-2765, November.
  2. Ellwanger, Reinhard & Snudden, Stephen, 2025. "Putting VAR forecasts of the real price of crude oil to the test," Finance Research Letters, Elsevier, vol. 77(C).
  3. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
  4. Si, Jingjian & Gao, Xiangyun & Zhou, Jinsheng, 2025. "Using deep learning to predict energy stock risk spillover based on co-investor attention," Finance Research Letters, Elsevier, vol. 74(C).
  5. Liu, Qingfu & Tao, Zhenyi & Tse, Yiuman & Wang, Chuanjie, 2022. "Stock market prediction with deep learning: The case of China," Finance Research Letters, Elsevier, vol. 46(PA).
  6. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
  7. Jinghua Wang & Geoffrey M. Ngene & Yan Shi & Ann Nduati Mungai, 2023. "An Investigation of the Predictability of Uncertainty Indices on Bitcoin Returns," JRFM, MDPI, vol. 16(10), pages 1-12, October.
  8. Lili Pan & Lin Wang & Qianqian Feng, 2022. "A Bibliometric Analysis of Risk Management in Foreign Direct Investment: Insights and Implications," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
  9. Chenlu Dang & Fan Wang & Zimo Yang & Hongxia Zhang & Yufeng Qian, 2022. "RETRACTED ARTICLE: Evaluating and forecasting the risks of small to medium-sized enterprises in the supply chain finance market using blockchain technology and deep learning model," Operations Management Research, Springer, vol. 15(3), pages 662-675, December.
  10. Xiaohang Ren & Wenting Jiang & Qiang Ji & Pengxiang Zhai, 2024. "Seeing is believing: Forecasting crude oil price trend from the perspective of images," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2809-2821, November.
  11. Chengying He & Yong Li & Tianqi Wang & Salman Ali Shah, 2024. "Is cryptocurrency a hedging tool during economic policy uncertainty? An empirical investigation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  12. Kang, Mingu & Hong, Joongi & Kim, Suntae, 2025. "Harnessing technical indicators with deep learning based price forecasting for cryptocurrency trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
  13. Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
  14. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
  15. Samuka Mohanty & Rajashree Dash, 2022. "Neural Network-Based Bitcoin Pricing Using a New Mutated Climb Monkey Algorithm with TOPSIS Analysis for Sustainable Development," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
  16. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
  17. Naseh Majidi & Mahdi Shamsi & Farokh Marvasti, 2022. "Algorithmic Trading Using Continuous Action Space Deep Reinforcement Learning," Papers 2210.03469, arXiv.org.
  18. Nagl, Maximilian, 2024. "Intricacy of cryptocurrency returns," Economics Letters, Elsevier, vol. 239(C).
  19. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  20. Liu, Yujun & Li, Zhongfei & Nekhili, Ramzi & Sultan, Jahangir, 2023. "Forecasting cryptocurrency returns with machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
  21. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
  22. Huang, Zih-Chun & Sangiorgi, Ivan & Urquhart, Andrew, 2024. "Forecasting Bitcoin volatility using machine learning techniques," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 97(C).
  23. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
  24. Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
  25. Kui Wang & Jie Wan & Gang Li & Hao Sun, 2022. "A Hybrid Algorithm-Level Ensemble Model for Imbalanced Credit Default Prediction in the Energy Industry," Energies, MDPI, vol. 15(14), pages 1-18, July.
  26. Alvarez-Ramirez, Jose & Espinosa-Paredes, Gilberto & Vernon-Carter, E. Jaime, 2025. "Causal wavelet analysis of the Bitcoin price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.