IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v259y2022ics0360544222018667.html
   My bibliography  Save this item

A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ma, Xin & Peng, Bo & Ma, Xiangxue & Tian, Changbin & Yan, Yi, 2023. "Multi-timescale optimization scheduling of regional integrated energy system based on source-load joint forecasting," Energy, Elsevier, vol. 283(C).
  2. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
  3. Song, Jiancai & Wang, Kangning & Bian, Tianxiang & Li, Wen & Dong, Qianxing & Chen, Lei & Xue, Guixiang & Wu, Xiangdong, 2025. "A novel heat load prediction algorithm based on fuzzy C-mean clustering and mixed positional encoding informer," Applied Energy, Elsevier, vol. 388(C).
  4. Ren, Xiaoxiao & Tian, Xin & Wang, Kai & Yang, Sifan & Chen, Weixiong & Wang, Jinshi, 2025. "Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion," Energy, Elsevier, vol. 319(C).
  5. Fan, Pengdan & Wang, Dan & Wang, Wei & Zhang, Xiuyu & Sun, Yuying, 2024. "A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM," Energy, Elsevier, vol. 308(C).
  6. Wu, Huayi & Xu, Zhao, 2024. "Multi-energy flow calculation in integrated energy system via topological graph attention convolutional network with transfer learning," Energy, Elsevier, vol. 303(C).
  7. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
  8. Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
  9. Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
  10. Ye, Wenlian & Liu, Yang & Zhou, Zhongyou & Hu, Lulu & Liu, Yingwen, 2025. "Performance prediction of an auto-cascade refrigeration system using multiple-algorithmic approaches," Energy, Elsevier, vol. 314(C).
  11. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
  12. Chen, Wenhao & Rong, Fei & Lin, Chuan, 2025. "A multi-energy loads forecasting model based on dual attention mechanism and multi-scale hierarchical residual network with gated recurrent unit," Energy, Elsevier, vol. 320(C).
  13. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
  14. Xie, Xiangmin & Ding, Yuhao & Sun, Yuanyuan & Zhang, Zhisheng & Fan, Jianhua, 2024. "A novel time-series probabilistic forecasting method for multi-energy loads," Energy, Elsevier, vol. 306(C).
  15. Wu, Han & Du, Pei, 2024. "Dual-stream transformer-attention fusion network for short-term carbon price prediction," Energy, Elsevier, vol. 311(C).
  16. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Long-term price guidance mechanism for integrated energy systems based on gated recurrent unit - vision transformer prediction and fractional-order stochastic dynamic calculus control," Energy, Elsevier, vol. 312(C).
  17. Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
  18. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
  19. Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
  20. Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
  21. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
  22. Serrano-Arévalo, Tania Itzel & López-Flores, Francisco Javier & Raya-Tapia, Alma Yunuen & Ramírez-Márquez, César & Ponce-Ortega, José María, 2023. "Optimal expansion for a clean power sector transition in Mexico based on predicted electricity demand using deep learning scheme," Applied Energy, Elsevier, vol. 348(C).
  23. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  24. Wang, Jianguo & Han, Lincheng & Zhang, Xiuyu & Wang, Yingzhou & Zhang, Shude, 2023. "Electrical load forecasting based on variable T-distribution and dual attention mechanism," Energy, Elsevier, vol. 283(C).
  25. Yin, Linfei & Ju, Linyi, 2025. "ShuffleTransformerMulti-headAttentionNet network for user load forecasting," Energy, Elsevier, vol. 322(C).
  26. Gao, Peng & Yang, Yang & Li, Fei & Ge, Jiaxin & Yin, Qianqian & Wang, Ruikun, 2024. "Research on integrated decision making of multiple load combination forecasting for integrated energy system," Energy, Elsevier, vol. 311(C).
  27. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.