IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v199y2020ics0360544220305259.html
   My bibliography  Save this item

The reservoir network: A new network topology for district heating and cooling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dibos, Sina & Pesch, Thiemo & Benigni, Andrea, 2024. "HeatNetSim: An open-source simulation tool for heating and cooling networks suitable for future energy systems," Energy, Elsevier, vol. 312(C).
  2. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  3. Paolo Sdringola & Mattia Ricci & Maria Alessandra Ancona & Federico Gianaroli & Cristina Capodaglio & Francesco Melino, 2023. "Modelling a Prototype of Bidirectional Substation for District Heating with Thermal Prosumers," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
  4. Hirsch, Hauke & Nicolai, Andreas, 2022. "An efficient numerical solution method for detailed modelling of large 5th generation district heating and cooling networks," Energy, Elsevier, vol. 255(C).
  5. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  6. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
  7. Libor Kudela & Radomír Chýlek & Jiří Pospíšil, 2020. "Efficient Integration of Machine Learning into District Heating Predictive Models," Energies, MDPI, vol. 13(23), pages 1-12, December.
  8. Teerajet Chaiyason & Juckamas Laohavanich & Suphan Yangyuen & Cherdpong Chiawchanwattana & Nisanath Kaewwinud & Nirattisak Khongthon & Siwa Kaewplang & Jurawan Nontapon & Anongrit Kangrang, 2023. "Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  9. Werner, Sven, 2022. "Network configurations for implemented low-temperature district heating," Energy, Elsevier, vol. 254(PB).
  10. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
  11. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
  12. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
  13. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
  14. Maccarini, Alessandro & Sotnikov, Artem & Sommer, Tobias & Wetter, Michael & Sulzer, Matthias & Afshari, Alireza, 2023. "Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks," Energy, Elsevier, vol. 275(C).
  15. Angelidis, Orestis & Zinsmeister, Daniel & Ioannou, Anastasia & Friedrich, Daniel & Thomson, Alan & Ganslmeier, Ulrich & Falcone, Gioia, 2024. "Development and experimental validation of a hydraulic design and control philosophies for 5th generation district heating and cooling networks," Energy, Elsevier, vol. 308(C).
  16. Coccia, Gianluca & Mugnini, Alice & Polonara, Fabio & Arteconi, Alessia, 2021. "Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling," Energy, Elsevier, vol. 222(C).
  17. Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
  18. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
  19. Abugabbara, Marwan & Lindhe, Jonas & Javed, Saqib & Johansson, Dennis & Claesson, Johan, 2024. "Comparative study and validation of a new analytical method for hydraulic modelling of bidirectional low temperature networks," Energy, Elsevier, vol. 296(C).
  20. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
  21. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
  22. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
  23. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "District Heating for Poorly Insulated Residential Buildings—Comparing Results of Visual Study, Thermography, and Modeling," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
  24. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
  25. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  26. Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
  27. Gross, Michel & Karbasi, Babak & Reiners, Tobias & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Implementing prosumers into heating networks," Energy, Elsevier, vol. 230(C).
  28. Lee, Minwoo & Han, Changho & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and cost savings through heat trading between two massive prosumers using solar and ground energy systems connected to district heating networks," Energy, Elsevier, vol. 284(C).
  29. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2022. "Design and cost comparison of district heating and cooling (DHC) network configurations using ring topology – A case study," Energy, Elsevier, vol. 258(C).
  30. Abugabbara, Marwan & Chaulagain, Nischal & Iarkov, Ilia & Janson, Ulla & Javed, Saqib, 2024. "Assessing the potential of energy sharing through a shallow geothermal heating and cooling network," Renewable Energy, Elsevier, vol. 231(C).
  31. Edtmayer, Hermann & Nageler, Peter & Heimrath, Richard & Mach, Thomas & Hochenauer, Christoph, 2021. "Investigation on sector coupling potentials of a 5th generation district heating and cooling network," Energy, Elsevier, vol. 230(C).
  32. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee, 2021. "Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems," Energies, MDPI, vol. 14(21), pages 1-24, November.
  33. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
  34. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  35. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
  36. Gautier, Antoine & Wetter, Michael & Sulzer, Matthias, 2022. "Resilient cooling through geothermal district energy system," Applied Energy, Elsevier, vol. 325(C).
  37. Stanislav Chicherin, 2025. "Hydraulic Balancing of District Heating Systems and Improving Thermal Comfort in Buildings," Energies, MDPI, vol. 18(5), pages 1-26, March.
  38. Simone Buffa & Anton Soppelsa & Mauro Pipiciello & Gregor Henze & Roberto Fedrizzi, 2020. "Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control," Energies, MDPI, vol. 13(17), pages 1-25, August.
  39. Edmund Widl & Giorgio Agugiaro & Jan Peters-Anders, 2021. "Linking Semantic 3D City Models with Domain-Specific Simulation Tools for the Planning and Validation of Energy Applications at District Level," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
  40. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
  41. Zhang, Yuhang & Liu, Mingzhe & O'Neill, Zheng & Wen, Jin, 2024. "Temperature control strategies for fifth generation district heating and cooling systems: A review and case study," Applied Energy, Elsevier, vol. 376(PA).
  42. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
  43. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
  44. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.