IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v160y2018icp810-819.html
   My bibliography  Save this item

Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
  2. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
  3. Jozef Barunik & Lubos Hanus, 2023. "Learning the Probability Distributions of Day-Ahead Electricity Prices," Papers 2310.02867, arXiv.org, revised Jul 2025.
  4. Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.
  5. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
  6. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
  7. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
  8. Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
  9. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
  10. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
  11. Liu, Mingping & Wang, Jialong & Deng, Suhui & Zhong, Chunxiao & Wang, Yuhao, 2025. "Short-term load probabilistic forecasting based on non-equidistant monotone composite quantile regression and improved MICN," Energy, Elsevier, vol. 320(C).
  12. He, Yaoyao & Wang, Yun & Wang, Shuo & Yao, Xin, 2022. "A cooperative ensemble method for multistep wind speed probabilistic forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  13. Yiqi Lu & Yongpan Li & Da Xie & Enwei Wei & Xianlu Bao & Huafeng Chen & Xiancheng Zhong, 2018. "The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load," Energies, MDPI, vol. 11(11), pages 1-16, November.
  14. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
  15. Sunghyeon Choi & Jin Hur, 2020. "An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting," Energies, MDPI, vol. 13(6), pages 1-16, March.
  16. Serrano-Guerrero, Xavier & Briceño-León, Marco & Clairand, Jean-Michel & Escrivá-Escrivá, Guillermo, 2021. "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, Elsevier, vol. 297(C).
  17. Meisenbacher, Stefan & Phipps, Kaleb & Taubert, Oskar & Weiel, Marie & Götz, Markus & Mikut, Ralf & Hagenmeyer, Veit, 2025. "AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability," Applied Energy, Elsevier, vol. 392(C).
  18. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
  19. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
  20. Xu Ran & Chang Xu & Lei Ma & Feifei Xue, 2022. "Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR," Energies, MDPI, vol. 15(11), pages 1-22, June.
  21. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
  22. Pedro Cadahia & Antonio A. Golpe & Juan M. Mart'in 'Alvarez & E. Asensio, 2022. "Measuring anomalies in cigarette sales by using official data from Spanish provinces: Are there only the anomalies detected by the Empty Pack Surveys (EPS) used by Transnational Tobacco Companies (TTC," Papers 2203.06640, arXiv.org.
  23. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Photovoltaic Power Output Prediction Based on k -Fold Cross-Validation and an Ensemble Model," Energies, MDPI, vol. 12(7), pages 1-15, March.
  24. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  25. Salimian Rizi, Behzad & Pavlak, Gregory & Cushing, Vincent & Heidarinejad, Mohammad, 2023. "Predicting uncertainty of a chiller plant power consumption using quantile random forest: A commercial building case study," Energy, Elsevier, vol. 283(C).
  26. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.