My bibliography
Save this item
Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
- Guansan Du & Frank Elston, 2022. "RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models," Operations Management Research, Springer, vol. 15(3), pages 925-940, December.
- David Alaminos & Ignacio Esteban & M. Belén Salas, 2023. "Neural networks for estimating Macro Asset Pricing model in football clubs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(2), pages 57-75, April.
- Bo Gao, 2022. "The Use of Machine Learning Combined with Data Mining Technology in Financial Risk Prevention," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1385-1405, April.
- Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
- Silvia Garc'ia-M'endez & Francisco de Arriba-P'erez & Ana Barros-Vila & Francisco J. Gonz'alez-Casta~no, 2024. "Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning," Papers 2404.01337, arXiv.org.
- Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
- Zografopoulos, Lazaros & Iannino, Maria Chiara & Psaradellis, Ioannis & Sermpinis, Georgios, 2025. "Industry return prediction via interpretable deep learning," European Journal of Operational Research, Elsevier, vol. 321(1), pages 257-268.
- Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
- Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
- Wang, Weiqing & Chen, Yuxi & Wang, Liukai & Xiong, Yu, 2025. "Developing the value of legal judgments of supply chain finance for credit risk prediction through novel ACWGAN-GPSA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
- K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
- Jing Hao & Feng He & Feng Ma & Shibo Zhang & Xiaotao Zhang, 2025. "Machine learning vs deep learning in stock market investment: an international evidence," Annals of Operations Research, Springer, vol. 348(1), pages 93-115, May.
- Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
- Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Junwei Chen, 2023. "Analysis of Bitcoin Price Prediction Using Machine Learning," JRFM, MDPI, vol. 16(1), pages 1-25, January.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Wang, Gang-Jin & Chen, Yan & Zhu, You & Xie, Chi, 2024. "Systemic risk prediction using machine learning: Does network connectedness help prediction?," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.