IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v283y2020i1p217-234.html
   My bibliography  Save this item

Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
  2. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
  3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
  4. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
  5. Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
  6. Guansan Du & Frank Elston, 2022. "RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models," Operations Management Research, Springer, vol. 15(3), pages 925-940, December.
  7. David Alaminos & Ignacio Esteban & M. Belén Salas, 2023. "Neural networks for estimating Macro Asset Pricing model in football clubs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(2), pages 57-75, April.
  8. Bo Gao, 2022. "The Use of Machine Learning Combined with Data Mining Technology in Financial Risk Prevention," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1385-1405, April.
  9. Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
  10. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
  11. Silvia Garc'ia-M'endez & Francisco de Arriba-P'erez & Ana Barros-Vila & Francisco J. Gonz'alez-Casta~no, 2024. "Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning," Papers 2404.01337, arXiv.org.
  12. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
  13. Zografopoulos, Lazaros & Iannino, Maria Chiara & Psaradellis, Ioannis & Sermpinis, Georgios, 2025. "Industry return prediction via interpretable deep learning," European Journal of Operational Research, Elsevier, vol. 321(1), pages 257-268.
  14. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
  15. Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
  16. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
  17. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
  18. Wang, Weiqing & Chen, Yuxi & Wang, Liukai & Xiong, Yu, 2025. "Developing the value of legal judgments of supply chain finance for credit risk prediction through novel ACWGAN-GPSA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
  19. K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
  20. Jing Hao & Feng He & Feng Ma & Shibo Zhang & Xiaotao Zhang, 2025. "Machine learning vs deep learning in stock market investment: an international evidence," Annals of Operations Research, Springer, vol. 348(1), pages 93-115, May.
  21. Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
  22. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  23. Junwei Chen, 2023. "Analysis of Bitcoin Price Prediction Using Machine Learning," JRFM, MDPI, vol. 16(1), pages 1-25, January.
  24. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
  25. Wang, Gang-Jin & Chen, Yan & Zhu, You & Xie, Chi, 2024. "Systemic risk prediction using machine learning: Does network connectedness help prediction?," International Review of Financial Analysis, Elsevier, vol. 93(C).
  26. Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.