IDEAS home Printed from https://ideas.repec.org/r/eee/ecmode/v36y2014icp176-190.html
   My bibliography  Save this item

Volatility forecasting using high frequency data: Evidence from stock markets

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
  2. Thushari N. Vidanage & Fabrizio Carmignani & Tarlok Singh, 2017. "Predictability of Return Volatility Across Different Emerging Capital Markets: Evidence from Asia," South Asian Journal of Macroeconomics and Public Finance, , vol. 6(2), pages 157-177, December.
  3. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
  4. Yue-Jun Zhang & Han Zhang, 2023. "Volatility Forecasting of Crude Oil Market: Which Structural Change Based GARCH Models have Better Performance?," The Energy Journal, , vol. 44(1), pages 175-194, January.
  5. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
  6. Tang, Zhenpeng & Lin, Qiaofeng & Cai, Yi & Chen, Kaijie & Liu, Dinggao, 2024. "Harnessing the power of real-time forum opinion: Unveiling its impact on stock market dynamics using intraday high-frequency data in China," International Review of Financial Analysis, Elsevier, vol. 93(C).
  7. Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
  8. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
  9. Yu, Rentian & Xiao, Haotian & Zhu, Yukun & Zhang, Gongqiu, 2025. "Does multi-scale GARCH information enhance volatility prediction?," Finance Research Letters, Elsevier, vol. 78(C).
  10. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
  11. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
  12. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
  13. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
  14. Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
  15. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
  16. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
  17. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
  18. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
  19. Ma, Feng & Liu, Jing & Huang, Dengshi & Chen, Wang, 2017. "Forecasting the oil futures price volatility: A new approach," Economic Modelling, Elsevier, vol. 64(C), pages 560-566.
  20. Werner Kristjanpoller, 2024. "A hybrid econometrics and machine learning based modeling of realized volatility of natural gas," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-32, December.
  21. Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
  22. Wen, Danyan & Wang, Yudong & Zhang, Yaojie, 2021. "Intraday return predictability in China’s crude oil futures market: New evidence from a unique trading mechanism," Economic Modelling, Elsevier, vol. 96(C), pages 209-219.
  23. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
  24. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
  25. Maria Ghani & Feng Ma & Dengshi Huang, 2024. "Forecasting the Asian stock market volatility: Evidence from WTI and INE oil futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1496-1512, April.
  26. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.