IDEAS home Printed from https://ideas.repec.org/r/eee/dyncon/v54y2015icp86-110.html

Complete subset regressions with large-dimensional sets of predictors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
  2. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
  3. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
  4. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
  5. Cheng, Tingting & Jiang, Shan & Zhao, Albert Bo & Jia, Zhimin, 2023. "Complete subset averaging methods in corporate bond return prediction," Finance Research Letters, Elsevier, vol. 54(C).
  6. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
  7. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
  8. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
  9. Mukherjee, Krishnendu, 2024. "Machine Learning Methods for Surge Rate Prediction: A Case Study of Yassir," MPRA Paper 122151, University Library of Munich, Germany.
  10. Kropiński, Paweł & Bosek, Bartłomiej & Pudo, Mikołaj, 2024. "State ownership, probability of informed trading, and profitability potential: Evidence from the Warsaw Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  11. Klaus Boesch & Flavio A. Ziegelmann, 2025. "Machine Learning Methods and Time Series: A Through Forecasting Study via Simulation and USA Inflation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 1-34, July.
  12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  13. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
  14. Boot, Tom & Nibbering, Didier, 2019. "Forecasting using random subspace methods," Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
  15. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
  16. Seojeong Lee & Youngki Shin, 2021. "Complete subset averaging with many instruments," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
  17. Seojeong Lee & Youngki Shin, 2018. "Optimal Estimation with Complete Subsets of Instruments," Department of Economics Working Papers 2018-15, McMaster University.
  18. Byung Yeon Kim & Heejoon Han, 2022. "Multi-Step-Ahead Forecasting of the CBOE Volatility Index in a Data-Rich Environment: Application of Random Forest with Boruta Algorithm," Korean Economic Review, Korean Economic Association, vol. 38, pages 541-569.
  19. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
  20. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
  21. Lee, Ji Hyung & Shin, Youngki, 2023. "Complete Subset Averaging For Quantile Regressions," Econometric Theory, Cambridge University Press, vol. 39(1), pages 146-188, February.
  22. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
  23. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
  24. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
  25. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
  26. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  27. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.