IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v54y2010i12p2883-2898.html
   My bibliography  Save this item

Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
  2. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
  3. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
  4. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  5. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
  6. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
  7. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
  8. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
  9. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
  10. Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  11. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
  12. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
  13. Carlos A. Abanto-Valle & Gabriel Rodríguez & Luis M. Castro Cepero & Hernán B. Garrafa-Aragón, 2024. "Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1775-1801, September.
  14. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
  15. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
  16. Sujay Mukhoti & Pritam Ranjan, 2016. "Mean-correction and Higher Order Moments for a Stochastic Volatility Model with Correlated Errors," Papers 1605.02418, arXiv.org.
  17. Mao, Xiuping & Ruiz Ortega, Esther & Lopes Moreira da Veiga, María Helena, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
  18. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
  19. Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
  20. Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
  21. Abbas Mahdavi & Anthony F. Desmond & Ahad Jamalizadeh & Tsung-I Lin, 2024. "Skew Multiple Scaled Mixtures of Normal Distributions with Flexible Tail Behavior and Their Application to Clustering," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 620-649, November.
  22. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
  23. Ying Wang & Sai Tsang Boris Choy & Hoi Ying Wong, 2016. "Bayesian Option Pricing Framework with Stochastic Volatility for FX Data," Risks, MDPI, vol. 4(4), pages 1-12, December.
  24. Mao, Xiuping & Ruiz Ortega, Esther & Lopes Moreira da Veiga, María Helena, 2014. "Score driven asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws142618, Universidad Carlos III de Madrid. Departamento de Estadística.
  25. Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
  26. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
  27. Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
  28. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
  29. Hedibert F. Lopes & Nicholas G. Polson, 2014. "Particle Learning for Fat-tailed Distributions," Business and Economics Working Papers 203, Unidade de Negocios e Economia, Insper.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.