IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i8p2597-2604.html
   My bibliography  Save this item

A study on the overall efficiency of direct methanol fuel cell by methanol crossover current

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2014. "An efficient mathematical model for air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 135(C), pages 490-503.
  2. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2013. "Thermal modelling of the cathode in air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 111(C), pages 529-537.
  3. Durán, E. & Andújar, J.M. & Segura, F. & Barragán, A.J., 2011. "A high-flexibility DC load for fuel cell and solar arrays power sources based on DC-DC converters," Applied Energy, Elsevier, vol. 88(5), pages 1690-1702, May.
  4. Yuan, Wei & Tang, Yong & Wang, Qinghui & Wan, Zhenping, 2011. "Dominance evaluation of structural factors in a passive air-breathing direct methanol fuel cell based on orthogonal array analysis," Applied Energy, Elsevier, vol. 88(5), pages 1671-1680, May.
  5. Zhengang Zhao & Dongjie Li & Xiaoping Xu & Dacheng Zhang, 2023. "An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-14, February.
  6. Yuan, Wei & Zhang, Zhaochun & Hu, Jinyi & Zhou, Bo & Tang, Yong, 2014. "Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation," Applied Energy, Elsevier, vol. 136(C), pages 143-149.
  7. Dutta, Kingshuk & Das, Suparna & Kumar, Piyush & Kundu, Patit Paban, 2014. "Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP," Applied Energy, Elsevier, vol. 118(C), pages 183-191.
  8. Das, Suparna & Kumar, Piyush & Dutta, Kingshuk & Kundu, Patit Paban, 2014. "Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell," Applied Energy, Elsevier, vol. 113(C), pages 169-177.
  9. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
  10. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  11. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
  12. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
  13. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
  14. Sudaroli, B. Mullai & Kolar, Ajit Kumar, 2016. "An experimental study on the effect of membrane thickness and PTFE (polytetrafluoroethylene) loading on methanol crossover in direct methanol fuel cell," Energy, Elsevier, vol. 98(C), pages 204-214.
  15. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
  16. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
  17. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
  18. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
  19. Kumar, Piyush & Dutta, Kingshuk & Das, Suparna & Kundu, Patit Paban, 2014. "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC," Applied Energy, Elsevier, vol. 123(C), pages 66-74.
  20. Na, Youngseung & Kwon, Jungmin & Kim, Hyun & Cho, Hyejung & Song, Inseob, 2013. "Characteristics of a direct methanol fuel cell system with the time shared fuel supplying approach," Energy, Elsevier, vol. 50(C), pages 406-411.
  21. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation," Applied Energy, Elsevier, vol. 135(C), pages 364-372.
  22. Jiang, Jinghui & Li, Yinshi & Liang, Jiarong & Yang, Weiwei & Li, Xianglin, 2019. "Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  23. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "A sensor-less methanol concentration control system based on feedback from the stack temperature," Applied Energy, Elsevier, vol. 131(C), pages 257-266.
  24. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
  25. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "High power direct methanol fuel cell with a porous carbon nanofiber anode layer," Applied Energy, Elsevier, vol. 113(C), pages 946-954.
  26. Li, Jing & Xu, Guoxiao & Luo, Xingying & Xiong, Jie & Liu, Zhao & Cai, Weiwei, 2018. "Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application," Applied Energy, Elsevier, vol. 213(C), pages 408-414.
  27. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
  28. Mehmood, Asad & An, Myung-Gi & Ha, Heung Yong, 2014. "Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs," Applied Energy, Elsevier, vol. 129(C), pages 346-353.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.