IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i9p1589-1595.html
   My bibliography  Save this item

Optimization for ice-storage air-conditioning system using particle swarm algorithm

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
  2. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  3. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
  4. Powell, Kody M. & Cole, Wesley J. & Ekarika, Udememfon F. & Edgar, Thomas F., 2013. "Optimal chiller loading in a district cooling system with thermal energy storage," Energy, Elsevier, vol. 50(C), pages 445-453.
  5. Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
  6. Yu, F.W. & Chan, K.T., 2010. "Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling," Applied Energy, Elsevier, vol. 87(4), pages 1198-1206, April.
  7. Hu, Mengqi, 2015. "A data-driven feed-forward decision framework for building clusters operation under uncertainty," Applied Energy, Elsevier, vol. 141(C), pages 229-237.
  8. Shuai Hao & Wenjie Zhou & Junliang Lu & Jiajun Wang, 2021. "The Optimal Pumping Power under Different Ice Slurry Concentrations Using Evolutionary Strategy Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
  9. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
  10. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai & Chi-Chun Lo, 2015. "Optimal Energy Reduction Schedules for Ice Storage Air-Conditioning Systems," Energies, MDPI, vol. 8(9), pages 1-18, September.
  11. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
  12. Daishi Sagawa & Kenji Tanaka, 2023. "Machine Learning-Based Estimation of COP and Multi-Objective Optimization of Operation Strategy for Heat Source Considering Electricity Cost and On-Site Consumption of Renewable Energy," Energies, MDPI, vol. 16(13), pages 1-26, June.
  13. Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
  14. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
  15. Naranjo Palacio, Santiago & Valentine, Keenan F. & Wong, Myra & Zhang, K. Max, 2014. "Reducing power system costs with thermal energy storage," Applied Energy, Elsevier, vol. 129(C), pages 228-237.
  16. Xuan Vien Nguyen, 2021. "Fabrication and Performance Evaluation of Cold Thermal Energy Storage Tanks Operating in Water Chiller Air Conditioning System," Energies, MDPI, vol. 14(14), pages 1-16, July.
  17. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
  18. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
  19. Xie, Yingming & Li, Gang & Liu, Daoping & Liu, Ni & Qi, Yingxia & Liang, Deqing & Guo, Kaihua & Fan, Shuanshi, 2010. "Experimental study on a small scale of gas hydrate cold storage apparatus," Applied Energy, Elsevier, vol. 87(11), pages 3340-3346, November.
  20. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2019. "Levelised Cost of Storage (LCOS) for solar-PV-powered cooling in the tropics," Applied Energy, Elsevier, vol. 242(C), pages 640-654.
  21. Li, Xiwang & Wen, Jin & Bai, Er-Wei, 2016. "Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification," Applied Energy, Elsevier, vol. 164(C), pages 69-88.
  22. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
  23. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
  24. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
  25. Amirhossein Eshraghi & Gholamreza Salehi & Seyedmohammadreza Heibati & Kamran Lari, 2019. "Developing operation of combined cooling, heat, and power system based on energy hub in a micro-energy grid: The application of energy storages," Energy & Environment, , vol. 30(8), pages 1356-1379, December.
  26. Heidari, A. & Mortazavi, S.S. & Bansal, R.C., 2020. "Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies," Applied Energy, Elsevier, vol. 261(C).
  27. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.
  28. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
  29. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
  30. Cui, Borui & Wang, Shengwei & Sun, Yongjun, 2014. "Life-cycle cost benefit analysis and optimal design of small scale active storage system for building demand limiting," Energy, Elsevier, vol. 73(C), pages 787-800.
  31. Cui, Borui & Gao, Dian-ce & Xiao, Fu & Wang, Shengwei, 2017. "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings," Applied Energy, Elsevier, vol. 201(C), pages 382-396.
  32. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
  33. Wooyoung Jeon, Jung Youn Mo, and Timothy D. Mount, 2015. "Developing a Smart Grid that Customers can Afford: The Impact of Deferrable Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  34. Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
  35. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
  36. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.