IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2476-d1653812.html
   My bibliography  Save this article

Energy Saving in Building Air-Conditioning Systems Based on Hippopotamus Optimization Algorithm for Optimizing Cooling Water Temperature

Author

Listed:
  • Yiyang Zheng

    (Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Yaping Gao

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Jianwen Gao

    (Infrastructure Construction Department, China Agricultural University, Beijing 100107, China)

Abstract

When traditional HVAC (heating, ventilation, and air-conditioning) systems are in operation, they often run according to the designed operating conditions. In fact, they operate under part-load conditions for more than 90% of the time, resulting in energy waste. Therefore, studying the optimization and regulation of their operating conditions during operation is necessary. Given that the control set point for cooling tower outlet water temperature differentially impacts chiller and cooling tower energy consumption during system operation, optimization of this parameter becomes essential. Therefore, this study focuses on optimizing the cooling tower outlet water temperature control point in central air-conditioning systems. We propose the Hippopotamus Optimization Algorithm (HOA), a novel population-based approach, to optimize cooling tower outlet water temperature control points for energy consumption minimization. This optimization is achieved through a coupled computational methodology integrating building envelope dynamics with central air-conditioning system performance. The energy consumption of the cooling tower was analyzed for varying outlet water temperature set points, and the differences between three control strategies were compared. The results showed that the HOA strategy successfully identifies an optimized control set point, achieving the lowest combined energy consumption for both the chiller and cooling tower. The performance of HOA is better compared to other algorithms in the optimization process. The optimized fitness value is minimal, and the function converges after five iterations and completes the optimization in a single time step when run in MATLAB in only 1.96 s. Compared to conventional non-optimized operating conditions, the HOA strategy yields significant energy savings: peak daily savings reach 4.5%, with an average total daily energy reduction of 3.2%. In conclusion, this paper takes full account of the mutual coupling between the building and the air-conditioning system, providing a feasible method for the simulation and optimization of the building air-conditioning system.

Suggested Citation

  • Yiyang Zheng & Yaping Gao & Jianwen Gao, 2025. "Energy Saving in Building Air-Conditioning Systems Based on Hippopotamus Optimization Algorithm for Optimizing Cooling Water Temperature," Energies, MDPI, vol. 18(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2476-:d:1653812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models," Energies, MDPI, vol. 13(17), pages 1-12, August.
    2. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
    3. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    4. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    5. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    6. Byeongmo Seo & Yeo Beom Yoon & Jung Hyun Mun & Soolyeon Cho, 2019. "Application of Artificial Neural Network for the Optimum Control of HVAC Systems in Double-Skinned Office Buildings," Energies, MDPI, vol. 12(24), pages 1-22, December.
    7. Nam-Chul Seong & Jee-Heon Kim & Wonchang Choi, 2019. "Optimal Control Strategy for Variable Air Volume Air-Conditioning Systems Using Genetic Algorithms," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiaming & Rezgui, Yacine & Zhao, Tianyi, 2025. "Collaborative optimization method for solving the diffusion and allocation issues in complex variable flow rate HVAC systems," Applied Energy, Elsevier, vol. 378(PA).
    2. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    3. Juan-Carlos Fraile & Julio San-José & Ana González-Alonso, 2014. "A Boiler Room in a 600-Bed Hospital Complex: Study, Analysis, and Implementation of Energy Efficiency Improvements," Energies, MDPI, vol. 7(5), pages 1-22, May.
    4. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    5. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    6. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    7. Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
    8. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    9. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    10. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    11. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    12. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    13. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    14. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    15. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    16. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    17. Lin Huang & Daiming Qu & Jianguo Zhou & Jialin Zhang, 2024. "The Optimization of UAV-Assisted Downlink Transmission Based on RSMA," Mathematics, MDPI, vol. 13(1), pages 1-16, December.
    18. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.
    19. Mu, Baojie & Li, Yaoyu & House, John M. & Salsbury, Timothy I., 2017. "Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control," Applied Energy, Elsevier, vol. 208(C), pages 766-781.
    20. Ma, Keyan & Liu, Mingsheng & Zhang, Jili, 2021. "Online optimization method of cooling water system based on the heat transfer model for cooling tower," Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2476-:d:1653812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.