IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v278y2020ics0306261920309715.html

A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
  2. Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
  3. Yang, Lisheng & Huang, Jianuo & Mi, Jia & Hajj, Muhammad & Bacelli, Giorgio & Zuo, Lei, 2024. "Control-inspired design and power optimization of an active mechanical motion rectifier based power takeoff for wave energy converters," Renewable Energy, Elsevier, vol. 228(C).
  4. Zhang, Chongwei & Li, Donghai & Ding, Zhenyu & Liu, Yingyi & Cao, Feifei & Ning, Dezhi, 2024. "Wave energy converter with multiple degrees of freedom for sustainable repurposing of decommissioned offshore platforms: An experimental study," Applied Energy, Elsevier, vol. 376(PA).
  5. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
  6. Portilla-Yandún, Jesús & Acero, Wilson Guachamín & Soria, Rafael & Bravo, Jorge & Alvarez, Ricardo & Paredes, Ruben & Arias, Mijail, 2025. "Spectral and Entropy-based Wave Energy resource assessment: A global view, and point analysis at the Galapagos Islands," Renewable Energy, Elsevier, vol. 246(C).
  7. Gao, Hong & Xiao, Jie, 2021. "Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system," Applied Energy, Elsevier, vol. 299(C).
  8. Ju, Kun & Xu, Sheng & Zhang, Huidong & Jin, Siya, 2025. "A study on a novel multi-body floating-point absorber with a nonlinear power take-off system and its hydrodynamic performance," Energy, Elsevier, vol. 324(C).
  9. Rao, Xiang & Wu, Bijun & Liu, Peiyu & Zhang, Fuming & Yuan, Zhiwen, 2025. "High conversion efficiency of oscillating-buoy WEC with pneumatic PTO: Principle analysis and experimental verification," Renewable Energy, Elsevier, vol. 252(C).
  10. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
  11. Yang, Lisheng & Huang, Jianuo & Spencer, Steven J. & Li, Xiaofan & Mi, Jia & Bacelli, Giorgio & Hajj, Muhammad & Zuo, Lei, 2025. "Electrical power potential of a wave energy converter using an active mechanical motion rectifier based power take-off," Renewable Energy, Elsevier, vol. 252(C).
  12. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
  13. Bartosz Drzymała & Jakub Gęca & Marcin Bocheński, 2023. "Kinetic Vibration Energy Harvester Based on Electromechanical Converter with Power Electronics Active Rectifier," Energies, MDPI, vol. 16(20), pages 1-12, October.
  14. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
  15. Azam, Ali & Ahmed, Ammar & Yi, Minyi & Zhang, Zutao & Zhang, Zeqiang & Aslam, Touqeer & Mugheri, Shoukat Ali & Abdelrahman, Mansour & Ali, Asif & Qi, Lingfei, 2024. "Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
  16. Mi, Jia & Huang, Jianuo & Yang, Lisheng & Ahmed, Alaa & Li, Xiaofan & Wu, Xian & Datla, Raju & Staby, Bill & Hajj, Muhammad & Zuo, Lei, 2025. "Multi-scale concurrent design of a 100 kW wave energy converter," Renewable Energy, Elsevier, vol. 238(C).
  17. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
  18. Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
  19. Xia, Xiaofeng & Fan, Chengliang & Zhou, Qiqi & Kong, Weihua & Liu, Genshuo & Zhang, Zutao & Pan, Yajia & Luo, Dabing & Azam, Ali & Tang, Minfeng, 2024. "A self-powered and self-sensing wave energy harvester based on a three-rotor motor of axle disk type for sustainable sea," Energy, Elsevier, vol. 312(C).
  20. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
  21. Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
  22. Li, Hai & Shi, Xiaodan & Kong, Weihua & Kong, Lingji & Hu, Yongli & Wu, Xiaoping & Pan, Hongye & Zhang, Zutao & Pan, Yajia & Yan, Jinyue, 2025. "Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review," Renewable Energy, Elsevier, vol. 238(C).
  23. Mi, Jia & Wu, Xian & Capper, Joseph & Li, Xiaofan & Shalaby, Ahmed & Wang, Ruoyu & Lin, Shihong & Hajj, Muhammad & Zuo, Lei, 2023. "Experimental investigation of a reverse osmosis desalination system directly powered by wave energy," Applied Energy, Elsevier, vol. 343(C).
  24. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
  25. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
  26. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
  27. Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.