My bibliography
Save this item
Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
- Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
- Wen, Na & Tan, Hongbo & Pedersen, Simon & Yang, Zhenyu & Qin, Xiaoqiao, 2023. "Thermodynamic and economic analyses of the integrated cryogenic energy storage and gas power plant system," Renewable Energy, Elsevier, vol. 218(C).
- Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
- Arian Semedo & João Garcia & Moisés Brito, 2025. "Cryogenics in Renewable Energy Storage: A Review of Technologies," Energies, MDPI, vol. 18(6), pages 1-23, March.
- He, Tianbiao & Zhang, Jibao & Mao, Ning & Linga, Praveen, 2021. "Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system," Applied Energy, Elsevier, vol. 291(C).
- Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
- Yang, Sheng & Wen, Jiakang & Liu, Zhiqiang & Deng, Chengwei & Xie, Nan, 2024. "3E analyses and multi-objective optimization of a liquid nitrogen wash based cogeneration system for electrical power and LNG production," Energy, Elsevier, vol. 297(C).
- Yun Chen & Yunhao Zhao & Xinghao Zhang & Ying Wang & Rongyao Mi & Junxiao Song & Zhiguo Hao & Chuanbo Xu, 2025. "A Two-Stage Robust Optimization Strategy for Long-Term Energy Storage and Cascaded Utilization of Cold and Heat Energy in Peer-to-Peer Electricity Energy Trading," Energies, MDPI, vol. 18(2), pages 1-26, January.
- Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
- Daniarta, Sindu & Błasiak, Przemysław & Kolasiński, Piotr & Imre, Attila R., 2024. "Sustainability by means of cold energy utilisation-to-power conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Wang, Fei & Li, Panfeng & Gai, Limei & Chen, Yujie & Zhu, Baikang & Chen, Xianlei & Tao, Hengcong & Varbanov, Petar Sabev & Sher, Farooq & Wang, Bohong, 2024. "Enhancing the efficiency of power generation through the utilisation of LNG cold energy by a dual-fluid condensation rankine cycle system," Energy, Elsevier, vol. 305(C).
- Wu, Wencong & Xie, Shutao & Tan, Jiaqi & Ouyang, Tiancheng, 2022. "An integrated design of LNG cold energy recovery for supply demand balance using energy storage devices," Renewable Energy, Elsevier, vol. 183(C), pages 830-848.
- Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
- Chen, Kang & Han, Zihao & Fan, Gang & Zhang, Yicen & Yu, Haibin & Dai, Yiping, 2023. "Optimum design point exploration and performance analysis of a novel CO2 power generation system for LNG cold energy recovery: Considering the temperature fluctuation of heat source," Energy, Elsevier, vol. 275(C).
- Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
- Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- He, Tianbiao & Ma, Jie & Mao, Ning & Qi, Meng & Jin, Tao, 2024. "Exploring the stability and dynamic responses of dual-stage series ORC using LNG cold energy for sustainable power generation," Applied Energy, Elsevier, vol. 372(C).
- Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
- Wang, Zhikang & Li, Junxian & Li, Yihong & Fan, Xiaoyu & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "Thermodynamic and economic analysis of multi-generation system based on LNG-LAES integrating with air separation unit," Energy, Elsevier, vol. 306(C).
- Mun, Haneul & Kim, Yeonghyun & Park, Jinwoo & Lee, Inkyu, 2024. "Power generation system utilizing cold energy from liquid hydrogen: Integration with a liquid air storage system for peak load shaving," Energy, Elsevier, vol. 306(C).
- Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
- Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.