IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v216y2018icp311-322.html
   My bibliography  Save this item

Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
  2. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
  3. Yun, Seokwon & Lee, Sunghoon & Jang, Mun-Gi & Kim, Jin-Kuk, 2021. "Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis," Energy, Elsevier, vol. 236(C).
  4. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
  5. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  6. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
  7. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
  8. Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
  9. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
  10. Yan, Linbo & Wang, Ziqi & Cao, Yang & He, Boshu, 2020. "Comparative evaluation of two biomass direct-fired power plants with carbon capture and sequestration," Renewable Energy, Elsevier, vol. 147(P1), pages 1188-1198.
  11. Yun, Seokwon & Jang, Mun-Gi & Kim, Jin-Kuk, 2021. "Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry," Energy, Elsevier, vol. 229(C).
  12. Xie, Weiyi & Chen, Xiaoping & Ma, Jiliang & Liu, Daoyin & Cai, Tianyi & Wu, Ye, 2019. "Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  13. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
  14. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
  15. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
  16. Magnanelli, Elisa & Mosby, Jostein & Becidan, Michael, 2021. "Scenarios for carbon capture integration in a waste-to-energy plant," Energy, Elsevier, vol. 227(C).
  17. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
  18. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
  19. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
  20. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
  21. Oko, Eni & Ramshaw, Colin & Wang, Meihong, 2018. "Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 223(C), pages 302-316.
  22. Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).
  23. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
  24. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  25. Yue Hu & Yachi Gao & Hui Lv & Gang Xu & Shijie Dong, 2018. "A New Integration System for Natural Gas Combined Cycle Power Plants with CO 2 Capture and Heat Supply," Energies, MDPI, vol. 11(11), pages 1-13, November.
  26. Garlapalli, Ravinder K. & Spencer, Michael W. & Alam, Khairul & Trembly, Jason P., 2018. "Integration of heat recovery unit in coal fired power plants to reduce energy cost of carbon dioxide capture," Applied Energy, Elsevier, vol. 229(C), pages 900-909.
  27. Arshadi, M. & Taghvaei, H. & Abdolmaleki, M.K. & Lee, M. & Eskandarloo, H. & Abbaspourrad, A., 2019. "Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent," Applied Energy, Elsevier, vol. 242(C), pages 1562-1572.
  28. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
  29. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
  30. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
  31. Zhang, Zhiwei & Hong, Suk-Hoon & Lee, Chang-Ha, 2023. "Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries," Energy, Elsevier, vol. 271(C).
  32. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
  33. Díaz-Herrera, Pablo R. & Alcaraz-Calderón, Agustín M. & González-Díaz, Maria Ortencia & González-Díaz, Abigail, 2020. "Capture level design for a natural gas combined cycle with post-combustion CO2 capture using novel configurations," Energy, Elsevier, vol. 193(C).
  34. Muhammad Imran & Usman Ali & Ali Hasnain, 2021. "Impact of blends of aqueous amines on absorber intercooling for post combustion CO2 capture system," Energy & Environment, , vol. 32(5), pages 921-944, August.
  35. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
  36. Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
  37. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.